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A B S T R A C T   

The green leaf area index (GLAI) has been widely used in agriculture, forestry, and environmental sciences for 
the analysis and modeling of many biophysical processes of vegetation, including the attenuation of light through 
the canopy, transpiration, photosynthesis, and carbon and nutrient cycles. Nevertheless, its usefulness is 
hampered by the uncertainty introduced through the lack of quantitative information on leaf biochemistry, 
particularly leaf chlorophyll content, in its computation. Thus far, this uncertainty has not been properly 
recognized nor quantified. The main goal of this study was to quantify the uncertainty of GLAI as used in the 
estimation of key photosynthetic canopy traits, namely canopy chlorophyll content (CCC). This uncertainty was 
assessed through the evaluation of the relationship between GLAI and CCC in structurally and functionally 
contrasting crop species (Zea mays L., Glycine max (L.) Merr., and Oryza sativa L). Results show that for the same 
GLAI value, CCC varied 2- to 3-fold due mainly to the variability of leaf chlorophyll content. Therefore, we 
suggest using the absorption coefficient in the red-edge region of the electromagnetic spectrum as an alternative 
to GLAI for the evaluation of CCC and other important photosynthetic canopy traits. The absorption coefficient in 
this spectral region is particularly suitable as it has been successfully related with the gross primary productivity 
of vegetation canopies, the quantum yield of photosynthesis, and is sensitive to the repositioning of chloroplasts 
within leaf cells in response to water stress.   

1. Introduction 

Biophysical characteristics that allow estimation of the amount of 
solar radiation absorbed by vegetation and its conversion into sugars 
permit one to infer not only the potential for primary productivity of a 
vegetated area, but also its physiological status. The ratio of leaf surface 
area to unit ground surface area, called leaf area index (LAI) is one of 
these characteristics. Note that LAI has also been defined as the one- 
sided area of leaves per unit of ground surface area (Watson, 1947), or 
as the maximum projected leaf area per unit of ground surface area to 
account for different leaf types (Myneni et al., 1997). This metric de
scribes the potential surface area available for the interception of 
photosynthetically active radiation (Oker-Blom et al., 1989) and water 

(Ghilain et al., 2020), for evapotranspiration (Yan et al., 2012), for 
assessing gas exchanges between terrestrial vegetation and the atmo
sphere (Cowling and Field, 2003), and for many other canopy traits. 
Accurate and timely information on LAI is, therefore, important for 
many applications in agriculture [e.g., yield estimation (Doraiswamy 
et al., 2003; Johnson, 2016)]; stress evaluation (Avetisyan et al., 2021), 
ecosystem ecology [e.g., estimation of primary productivity (Clark et al., 
2008)], and environmental change [e.g., changes in vegetation (Su 
et al., 2021)], among several others. This has induced the development 
of various techniques for obtaining accurate non-destructive and in situ 
estimations of LAI, combined with estimations of leaf angle distribution 
(Weiss et al., 2004). However, such techniques exhibit large un
certainties due to the clumped nature of leaves, together with the large 
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variability in the amount of photosynthetic vs. non-photosynthetic 
canopy components. 

Successful procedures that address leaf clumpiness are based on the 
estimation of the gap fraction (the probability that a beam of light 
penetrating inside a plant canopy will have no contact with any vege
tative element) (Weiss et al., 2004). However, the separation of LAI into 
its non-photosynthetic and photosynthetic components [the latter 
termed green LAI (GLAI)] has not been properly addressed. This sepa
ration is commonly performed through a visual inspection of the 
“greenness” of leaves (Boegh et al., 2002; Curran, 1983; Viña et al., 
2011), and without proper quantitative information about leaf 
biochemistry. Such visual inspection fails to account for the large vari
ability of what constitutes “green”, as it depends on the canopy chlo
rophyll content (CCC) according to different species, leaf structures (e. 
g., monocots, dicots), biochemical pathways (e.g., C3, C4), growth 
stages, and stress levels (e.g., water and nitrogen deficiencies), among 
others (Broge and Leblanc, 2001; Curran, 1983; Viña et al., 2011). 

While there is a significant relationship between canopy chlorophyll 
content (CCC) and GLAI, such a relationship often exhibits a large 
variation in CCC values for the same GLAI value. Moreover, there is 
often hysteresis in this relationship when separately considering the 
vegetative and senescence periods of canopy development (Peng et al., 
2017). Such large variation is the result of having leaves with quite 
different chlorophyll contents to be assessed as “green”, thus making the 
GLAI obtained to be less sensitive to the variability of CCC. This lack of 
sensitivity constitutes a source of uncertainty in the estimation of many 
photosynthetic canopy traits, including gross primary productivity 
(Gitelson et al., 2014). Yet, this source of uncertainty has not been 
properly recognized, or even quantified, in the scientific literature. 

In this study we describe a procedure, based on the relationship 
between GLAI and CCC, to quantify the uncertainty in the use of GLAI for 
assessing photosynthetic traits of contrasting crop canopies and under 
variable management practices (e.g., different watering regimes, soil 
nutrient applications). Being a function of LAI and leaf chlorophyll 
content (leaf [Chl]), CCC is sensitive to changes in plant physiology and 
constitutes a measure of potential plant productivity (Gitelson et al., 
2016). Therefore, it can be used to evaluate how sensitive GLAI is to 
changes in LAI and leaf [Chl]. To assess the reduction in uncertainty 
introduced when leaf [Chl] is incorporated into the assessment of 
photosynthetic canopy traits, we also evaluated how GLAI relates to the 
light absorption coefficient of plant canopies, which has been success
fully used as a measure of CCC (Gitelson et al., 2021, 2019). 

2. Methods 

This study utilized datasets of three contrasting crop species (maize – 
Zea mays L.; soybean – Glycine max (L.) Merr.; rice – Oryza sativa L.), 
with different leaf structures (i.e., monocot, dicot), plant physiognomies 
(i.e., plagiophile, planophile, erectophile), photosynthetic pathways (i. 
e., C3, C4), in a wide range of agricultural conditions (e.g., different 
cultivars and N-fertilization regimes, rainfed, irrigated), acquired in 
different locations, and across different years. These datasets have been 
analyzed in multiple studies for different purposes (Ciganda et al., 2009; 
Gitelson et al., 2019, 2018, 2016; Gitelson et al., 2005, 2008, 2006; 

Inoue et al., 2016; Peng et al., 2017; Viña et al., 2011). A summary of the 
procedures employed for their acquisition follows. More details on the 
data collection protocols are found in the cited papers. 

2.1. Study sites 

Data collection campaigns for soybean and maize were carried out 
during the growing seasons (from May to September) of 2002 to 2005 in 
three AmeriFlux sites located near Mead, Nebraska, USA. Sites 1 and 2 
were equipped with a center-pivot irrigation system. Site 1 was 
continuously under maize, while site 2 was under a maize-soybean 
rotation (maize in odd and soybean in even years). Site 3 was also 
under a maize-soybean rotation but relied entirely on rainfall (Verma 
et al., 2005). In irrigated and rainfed sites nitrogen (N) fertilizer (Urea 
Ammonium Nitrate; UAN) was applied a few days before planting (128 
kg N ha− 1 and 106 kg N ha− 1 in irrigated and rainfed sites, respectively) 
through coulters tied to tractors. In addition to this application, 34 kg N 
ha− 1 (UAN) were also applied in the irrigated sites through the irrigation 
system in two different occasions throughout the growing season. An 
additional dataset on maize was collected during the growing season of 
2006 in a sprinkler irrigated site near Shelton, Nebraska, USA under five 
N treatments (0, 50, 100, 150, and 200 kg N ha− 1). The data collection 
campaign for rice was performed in 2009 at experimental fields of the 
National Institute for Agro-Environmental Studies (NIAES) in Tsukuba, 
Japan (Inoue et al., 2016). In addition to the standard level of N appli
cation (10 g m− 2), four different N levels (2, 6, 14 and 16 g m− 2) were 
further applied to induce a wide range of LAI and CCC. According to the 
usual cultivation practices, a bundle of 3 to 4 rice seedlings was trans
planted as a hill at a 30 cm x 16 cm spacing. 

2.2. Reflectance measurements at canopy scale 

In the maize and soybean fields located near Mead, NE, U.S.A., time 
series of canopy reflectance measurements were obtained using two 
inter-calibrated radiometers (USB2000, Ocean Optics, Dunedin, FL; 
Table 1). One radiometer was equipped with a 25◦ field-of-view optical 
fiber pointing downward to measure upwelling radiance within a 2.4 m2 

sampling area (by placing the fiber at a height of approximately 5.5 m 
above the top of the canopy, which in maize had a maximum height of 3 
m). The other sensor was equipped with an optical fiber and a cosine 
diffuser pointing upward to measure downwelling irradiance. Percent 
reflectance was calculated as the ratio of upwelling radiance to down
welling irradiance (Rundquist et al., 2004; Viña et al., 2011). Data 
collection in the maize fields located near Shelton, NE, U.S.A., followed 
the same protocols as those in Mead, NE, U.S.A., except placing the 
upward fiber at a height of one meter above the top of the canopy 
(Table 1). In the rice fields located in Tsukuba, Japan, time series of 
canopy reflectance factors were obtained using a portable spectroradi
ometer (ASD FieldSpec-Pro, Analytical Spectral Devices, Inc., Long
mont, CO) with a 25◦ field-of-view at a nadir-looking angle from 2-m 
above the plants. Canopy height in rice ranged from 0.35 to 0.81 m 
during the study period. The placement of the upward optical fiber 
above of the crop canopies varied according to the uniformity of the 
spatial distribution of canopy elements within the Instantaneous Field of 

Table 1 
Summary of experimental datasets.  

Crops Year Sensor, spectral range Distance, FOV Leaf [Chl]determination Total N-fertilization, g m− 2 

Rice (Oryza sativa L. japonica variety) 2009 ASD 
350–2500 nm 

2 m, 25◦ Analytical 2, 6, 10, 14, 16, 
standard 10 

Maize (Zea mays L.) 
Mead, NE, USA 

2002–2005 USB2000 
400–1040 nm 

5.5 m, 25◦ Non-destructive & Analytical 10.6 

Maize (Zea mays L.) 
Shelton, NE, USA 

2006 USB2000 
400–900 nm 

1 m, 22◦ Analytical 0, 5, 10, 15, 20 

Soybean (Glycine max (L) Merr.) 2002, 2004 USB2000 
400–1040 nm 

5.5 m, 25◦ Non-destructive & Analytical 12.8  
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View (IFOV). This allows obtaining representative measurements of 
canopy reflectance. Canopy reflectance factors were calculated as the 
ratio of the upwelling radiance to that of a Spectralon-Labsphere white 
reference to account for differences in atmospheric conditions (Inoue 
et al., 2016) (Table 1). 

2.3. Green leaf area index (GLAI) 

Time series of GLAI estimation in maize and soybean sites in Mead 
and Shelton, NE, U.S.A. (Table 2) were obtained destructively from 
samples collected in plots (20 m x 20 m) representing major soil and 
crop production zones within each site (see Verma et al., 2005 for 
additional details). The GLAI plots were located adjacent to the footprint 
of the flux towers to minimize disturbance within these footprints. Green 
leaf samples obtained destructively in each plot were run through an 
area meter (LI-3100, Li-Cor, Inc., Lincoln, NE) to calculate the leaf area 
per plant. This area was then multiplied by the plant population 
(assessed in each plot) to obtain a plot-level GLAI, which were then 
averaged across plots within each sampling site to obtain a site-level 
GLAI (Viña et al., 2011). Time series of GLAI estimation in the rice 
sites (Table 2) were obtained destructively in five randomly sampled 
hills per plot using an area meter (LI-3100, Li-Cor, Inc., Lincoln, NE), 
after carefully removing all senescent leaf parts (Inoue et al., 2016). 

2.4. Leaf and canopy chlorophyll content 

Leaf [Chl] of maize and soybean (ear leaf in maize plants and the top- 
most fully expanded leaf in soybean plants) in the Mead sites (Table 2) 
was measured in the laboratory (Richardson et al., 2002; Wellburn, 
1994), concurrently with spectral reflectance measurements of the same 
leaves using an Ocean Optics radiometer equipped with a leaf clip 
(Ciganda et al., 2009). Foliar reflectance measurements were used to 
calculate the red edge chlorophyll index, a surrogate of leaf [Chl] 
(Gitelson et al., 2005): 

CIrededge = [(ρNIR / ρ720− 730) − 1] (1)  

where ρNIR is reflectance in the NIR range 780–800 nm and ρ720–730 is 
reflectance in the red edge range 720–730 nm. CIred edge was linearly 
related with the destructive lab measurements of leaf [Chl]. The rela
tionship leaf [Chl] vs. CIred edge, calibrated on a per-year basis, was used 
to retrieve leaf [Chl] (Ciganda et al., 2009; Gitelson et al., 2005, 2006) 
throughout the entire time series using canopy reflectance data. CCC 
was then calculated as the product of leaf [Chl] and GLAI. Maize leaf 
[Chl] in the Shelton sites was obtained destructively in the laboratory 
(Richardson et al., 2002; Wellburn, 1994) from the leaves of harvested 
plants in 1.0 m2 sampling areas. CCC was then obtained by adding the 
leaf [Chl] of all leaves per plot (Table 2). In rice, five hills per plot were 
randomly sampled to obtain a measure of leaf [Chl]. CCC was then 
obtained by multiplying leaf [Chl] by the biomass of green leaves per m2 

of ground area (Inoue et al., 2016) (Table 2). All these procedures 
assumed that the destructively sampled measurements of leaf [Chl] were 
representative of the crop canopies, as the variability in leaf [Chl] is 
driven more by the physiological status of the crop, which affects the 
entire canopy, than by other characteristics. This assumption is 
reasonable, as it was shown for maize that the leaf [Chl] of the ear leaf 
relates closely (R2 > 0.85) to the total CCC (Ciganda et al., 2008). 

3. Results and discussion 

Since CCC is a product of leaf [Chl] and GLAI, the slope of the GLAI 
vs. CCC relationship corresponds to (leaf [Chl])− 1. Thus, the relationship 
between GLAI and CCC can be used to assess the information content of 
both of these traits, while leaf [Chl] constitutes the main factor defining 
the form of this relationship (i.e., whether straight or curved). 

The relationship between CCC and GLAI obtained using data from 
the Mead sites under a standard, non-variable N-fertilization (Table 1) 
shows pronounced hysteresis. During the vegetative stage, before the 
LAI reaches maximal values, the relationship is quite close to linear in 
both maize and soybean canopies. However, during the reproductive 
stage (when leaf [Chl] declines), CCC is lower for the same GLAI as 
compared to the vegetative stage (Fig. 1). This shows the effect of 
growth stage on the variability of CCC, which is not fully captured by the 

Table 2 
Minimum (Min), maximum (Max), mean (Mn), and median (Md) leaf chlorophyll (a + b) content (in μg cm− 2), canopy chlorophyll content (in g m− 2), and green leaf 
area index (in m2 m− 2) in the maize [Mead (M; n = 124 samples) and Shelton (S; n = 60 samples)], soybean (n = 73), and rice (n = 64) sites.  

Sites Leaf Chl content Canopy Chl content Green LAI  

Min Max Mn Md Min Max Mn Md Min Max Mn Md 

Maize (M) 231 800 567 581 0.07 3.61 2.04 2.13 0.17 5.52 3.49 4.04 
Maize (S) 164 654 412 411 0.15 2.59 1.26 1.07 0.43 5.23 2.91 3.08 
Soybean 80 623 358 362 0.03 2.69 1.07 0.97 0.16 5.45 2.59 2.62 
Rice 152 584 322 294 0.01 2.13 0.63 0.53 0.08 6.73 2.13 2.14  

Fig. 1. Relationship between GLAI and CCC in rainfed maize (A) and soybean (B) during vegetative and reproductive stages. These crop fields received standard, 
non-variable N-fertilization regimes. 
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GLAI. In the particular case of maize, CCC variability is dominated by 
changes in N during the reproductive stage, as it is often relocated from 
the lower leaves to other plant parts. This N relocation occurs because N 
acquisition becomes more limited due to root die-off after anthesis. 

Beyond growth stage, differences in irrigation (i.e., irrigated vs. 
rainfed fields), crop cultivars used across sites and years, and N-fertil
ization regimes, cause a significant variability in leaf [Chl], which is 
captured by the CCC but not completely by the GLAI (Fig. 2). A 2-fold 
variability of CCC for the same GLAI value is apparent, which is 
caused not only by different leaf [Chl] during the vegetative and 
reproductive stages, but also due to the variability in leaf [Chl] induced 
by the differences in irrigation and crop cultivars under standard non- 
variable N-fertilization regimes (Fig. 2A and B). Furthermore, up-to 3- 
fold variability in CCC for the same GLAI was observed under variable 

N-fertilization regimes (Fig. 2C and D), which shows the effects of sig
nificant changes in leaf [Chl] not captured by the GLAI. 

The relationship between CCC and GLAI varies widely among crops, 
and in different irrigation and N-fertilization regimes (Table 3, Fig. 3A). 
The slope of this relationship was maximal in maize, which has the 
highest leaf [Chl] per unit of area (Gitelson et al., 2021), and 50% 
smaller in rice. Scattering of the sampling points from the regression line 
was quite large (Fig. 3A), generating large RMSE values (Table 3) and 
residuals exceeding 150% (Fig. 3B). 

The relationship presented in Fig. 3 constitutes a typical situation 
when multiple crop fields with different species, at different growth 
stages, and with different water and N treatments co-occur within the 
same scene obtained by airborne or spaceborne imaging remote sensors. 
Considering that CCC is a quantitative measure of the potential ab
sorption of solar radiation in the photosynthetically active region of the 
electromagnetic spectrum, and thus directly related to gross primary 
production (Gitelson et al., 2006; Peng et al., 2011), this relationship 
(Fig. 3; Table 3) shows that plant productivity may vary up-to 3-fold in 
canopies exhibiting the same GLAI. Thus, it constitutes a quantitative 
assessment of the uncertainty of GLAI obtained using a visual assessment 
of leaf color. 

While there are several destructive (e.g., using area meters) and non- 
destructive techniques for obtaining estimates of LAI in the field/lab 
(Jonckheere et al., 2004; Welles and Norman, 1991), the separation 
between the photosynthetic and non-photosynthetic canopy compo
nents, with few exceptions (Denison and Russotti, 1997), almost always 
follows a visual assessment of leaf color. Such assessment has been used 

Fig. 2. GLAI vs. CCC in irrigated and rainfed maize Mead sites in 2002–2005, with a standard, non-variable N-fertilization regime (A); soybean irrigated and rainfed 
sites in 2002 and 2004 with a standard, non-variable N-fertilization regime (B); maize Shelton sites in 2006 with a variable N-fertilization regime (C); rice sites in 
2009 with a variable N-fertilization regime (D). The red boxes show minimal and maximal CCC values for selected GLAI values. 

Table 3 
Statistics of the relationship between CCC and GLAI among crops and sites. The 
root mean squared error (RMSE) of the CCC estimated from the Green LAI is 
expressed in g m− 2, the normalized RMSE in percent, the average CCC in g m− 2, 
and the average Green LAI in m2 m− 2.  

Sites Mean CCC Mean GLAI RMSE NRMSE,% 

Maize (M) 1.96 3.49 0.45 23 
Maize (S) 1.21 2.87 0.62 51 
Soybean 1.05 2.59 0.6 57 
Rice 0.63 2.13 0.8 127 
All together 1.37 2.89 0.54 31  
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quite extensively in the calibration and validation of models based on 
remotely sensed data for the estimation of spatial and temporal vari
ability of GLAI at multiple spatial scales (Broge and Leblanc, 2001; 
Guindin-Garcia et al., 2012; Haboudane et al., 2004; Nguy-Robertson 
et al., 2012). Yet, as our results show, these assessments may have quite 
high uncertainties, as they fail to incorporate the variability of leaf 
[Chl]. Therefore, alternative metrics, such as those based on remotely 
sensed data, are needed to properly incorporate such variability. 

The theoretical background developed for satellite remote sensing of 
LAI (Myneni et al., 1995) establishes that the derivative of vegetation 
reflectance, ρ, with respect to wavelength, λ (dρ/dλ), common to all 
vegetation indices (VI), is indicative of the abundance and activity of ab
sorbers in leaves. Thus, any model developed for the remote estimation of 
GLAI must incorporate leaf [Chl], together with LAI, for an accurate 
estimation of vegetation productivity and vigor. The absorption coeffi
cient of pigments at leaf and canopy scales constitutes a suitable mea
sure of the photosynthetic status of plants (Gitelson et al., 2022, 2021, 
2020; Gitelson et al., 2019). The absorption coefficient of chlorophyll in 
the red-edge spectral region, αre, was introduced in the form (Gitelson 
et al., 2019): 

αre = ρNIR/ρ710− 740 − 1 (2)  

where ρNIR is canopy reflectance in the near-infrared spectral region 
beyond 780 nm, and ρ710–740 is canopy reflectance in the red-edge 

spectral region between 710 and 740 nm. αre was shown to be an ac
curate and, perhaps more important, generic measure of CCC in plants 
with contrasting leaf structures, canopy architectures and photosyn
thetic pathways (Gitelson et al., 2019). Such feature of αre is particularly 
important given the significant effect of leaf and canopy structural 
properties on the absorption of photosynthetically active radiation by 
plants. Thus, it can be used to understand and quantify how GLAI and 
CCC are related to the absorption coefficient of chlorophyll in plant 
canopies. 

While CCC explains 94% of the αre variance, GLAI explains only 81% 
of the of the αre variance (Fig. 4). The wide scattering of the sampling 
points from the best-fit function using GLAI (Fig. 4A) indicates a large 
variability in the absorption coefficient of canopies with the same GLAI. 
In contrast, a significant drop in this scattering of the sampling points is 
observed for the CCC (Fig. 4B). Considering that CCC is a function of leaf 
[Chl] and GLAI, this means that the incorporation of leaf [Chl] into the 
CCC (as in Fig. 4B) considerably reduces the uncertainty in the estima
tion of plant photosynthetic traits. 

To quantify the effect of either GLAI or CCC on αre, we used a 
sensitivity metric (Gitelson, 2013; Viña and Gitelson, 2005). This metric, 
termed noise equivalent (NE), is defined as the ratio of the root mean 
square error (RMSE) of the GLAI vs. αre and the CCC vs. αre relationship, 
respectively, and the first derivative of the best-fit function relating 
either GLAI or CCC to the αre: 

Fig. 3. (A) Relationship between CCC and GLAI for all crops and sites evaluated; (B) residuals of this relationship for all datasets combined.  

Fig. 4. Absorption coefficient of chlorophyll in the red-edge spectral region, αre, versus green LAI (A) and versus canopy chlorophyll content (B) for all data
sets evaluated. 
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NEΔGLAI = RMSE[GLAI vs. αre]/[dGLAI / dαre] (3)  

NEΔCCC = RMSE[CCCvs.αre]/[dCCC / dαre] (4) 

This function reflects how effectively GLAI and CCC characterize the 
absorption of radiation by plants in the photosynthetically active spectral 
region and how close to linearity are the GLAI vs. αre and the CCC vs. αre 
relationships. The smaller the noise equivalent, the closer the GLAI and 
CCC relate to the absorption coefficient (i.e., smaller RMSE and/or 
higher dGLAI/dαre or dCCC/dαre). For different crops and sites, the noise 
equivalent ranged from 0.1 to 0.31, with all values for the CCC being 
lower than those for the GLAI (Table 4). Considering all datasets 
together, the noise equivalent of CCC was around 50% that of GLAI 
(Table 4). The relative contribution of leaf [Chl] to the noise equivalent 
of GLAI [calculated as Δ,% = ((NEΔGLAI-NEΔCCC)/NEΔGLAI) x 100], 
was between 20 and 38.4% for the different crop and sites evaluated. 
The uncertainty reaches 48.6% when all datasets are considered 
together (Table 4). These uncertainties of the GLAI are due to the vari
ability in leaf [Chl] not included in the GLAI formulation. 

4. Concluding remarks 

Results of this study show that the incorporation of leaf [Chl] ad
dresses the inaccuracy introduced by the visual assessment of leaf 
greenness in the determination of GLAI and allows the quantification of 
the uncertainties in the estimation of photosynthetic canopy traits using 
GLAI. In addition, metrics for the estimation of canopy chlorophyll 
content, such as the light absorption coefficient in the red edge region, 
which have also been successfully related with gross primary produc
tivity of vegetation canopies (Gitelson et al., 2008, 2006; Hilker et al., 
2011; Rossini et al., 2014), quantum yield of photosynthesis (Gitelson 
et al., 2022), and are sensitive to the repositioning of chloroplasts within 
leaf cells occurring in response to water stress (e.g., Zygielbaum et al., 
2012), provide a more accurate representation of the photosynthetic 
status of plant canopies. Therefore, the estimation of canopy chlorophyll 
content through remote sensing procedures constitutes an alternative to 
GLAI, as it is directly related to photosynthesis activities. Such estima
tion should become a standard practice in agriculture, forestry, and 
photosynthesis research and applications. 
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