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FI uorescence: By d.eteqmg the invisible glow of chlorophyll, solar-{nduced ﬂLfo.rescence (SIF) oﬁer§ to
° revolutionize remote assessment of plant photosynthesis, productivity, and stress. SIF is
being applied with instruments at the ground level and with satellites at the global scale,

(]
ope n M eet | I‘Ig an d but airborne studies of individual management units, including agricultural plots and

" individual ecosystems, are needed to provide further understanding of the underlying
A. rb orne FI uorescence mechanisms tying SIF to photosynthesis.
This meeting will evaluate the state of knowledge in this rapidly emerging field and
w consider related science and technical applications, with a particular focus on airborne
orkSh op SIF methods and their validation.
The open meeting will be of broad interest and is open to the campus community,

Sept 26 -- Open Meetmg while the airborne workshop (by invitation) will focus on technical issues for SIF practi-

tioners. The optional field trip will enable participants to learn more about SIF research

Sept 27-28 - - A|rb0rne Workshop at the University of Nebraska-Lincoln.

- -Fi i Day 1: East Campus Union
Sept 29 FIE'd t”p Days 2-3: Hardin Hall d) \!A\!gssrb@;ligg& }
East Campus e ey of Sk
REGISTER HERE: go.unl.edu/openmeeting Contact: JOHN GAMON, 4024727525, Jgamon@unl.edu

Registfa‘[i[)n and information: JACKI LOOMIS, 4[]2'472'7550,j|00mi33@un|.8du protected status. Pleass see go unl edu/nandiserimination



Schedule (in Brief)

Open Meeting (Tuesday Sept 26)
— Open session, East Union
— Reception 5-7, 1250 N. 37t Street, Lincoln

Workshop* (Wed-Thurs, Sept 27-28)
— 901 Hardin Hall (and 2" floor meeting rooms)
— Dinner (TBA)

Field Trip* (Friday, Sept 29)
— CHAMP, Lincoln Airport
— Field Research Station (ENREC), Mead
— Lakehouse Farm & Prairie Plate Restaurant (Waverly)

Posters will be on display in Hardin Hall (2" floor lobby) Mon-Thurs
(lunch and coffee room)

*Workshop and Field Trip Participation Based on Early Registration
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Reception: 1250 N 37" Street, Lincoln NE (5-7 pm)




ENE Science and Application of ;}7

Chlorophyll Fluorescence

Aisa IBIS Image  CSP-3 and Calibration Targets 4 August 2017

Image cowrtesy of Rick Perk, Schoo ! of Nateral B es ources

* A brief history of chlorophyll fluorescence
e Key questions & hypotheses

* Potential applications

 Workshop goals



Brief History of Chl Fluorescence...

20 pm

Plagiomnium undulatum
https://en.wikipedia.org/wiki/

Chlorophyll_fluorescence#/

https://commons.wikimedia.org/wiki/
File%3AZz_Plagiomnium_undulatum_fluorescence.jpg




Kautsky Effect
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Fig. 1. Schematic representation of Chl a fluorescence intensity
changes in leaves as observed after turning on the excitation light. I, at

Dr. Hans Kautsky

30°C; 11, at 0°C; III, poisoned with HCN. Data from Kautsky and (1891-1966)
Hirsch (1931).

Kautsky, H., and Hirsch, A. (1931).
Neue Versuche zur Kohlensaureassimilation, Naturwissenschaften, 19:964-964.

(cited in Govindjee (1995) Sixty-three years since Kautsky chlorophyll a fluorescence
Aust. J. of Plant Physiol., 22, 131-160

http://www.fluoromatics.com/kautsky effect.php



Optical studies of photosynthetic dynamics

Gamon et al. (1990) Oecologia 85:1-7.



Spectral Plots of Photosynthetic Dynamics upon lllumination
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Gamon JA, Field CB, Bilger W, Bjorkman O, Fredeen A, Peinuelas J (1990) Remote Sensing
of the Xanthophyll Cycle and Chlorophyll Fluorescence in Sunflower Leaves and Canopies.

Oecologia. 85:1-7.



Photosynthetic Regulation
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Light-Use Efficiency Model

Solar-Induced  Greenness PRI, AF/Fm’
Fluorescence  (Chl, NDVI) (NPQ)

\ l l

Photosynthesis = (F,,z X PAR) x Efficiency

\\ |
Y

Carbon gain, APAR <— absorbed light

Primary Production

PAR = Photosynthetically Active Radiation



millennia
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Multi-scale optical sampling

How “scaleable” is SIF?
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Gamon et al. in prep



Sampling Challenges
(detecting tiny things inside bigger things)

NDVI
Chlorophyll

Carotenoids

Fluorescence,
Xanthophyll cycle
pigments (PRI)

https://www.worldmarket.com/
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Needles in the Haystack
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The SIF needle in the haystack

e Carter et al. (1990) used the Fraunhofer line-
depth principle to quantify a fluorescence
signal in the Ha line at 656.3 nm.

* Frankenberg et al. (2011) and Joiner et al.
(2011) reported that existing satellites could
detect a tiny fluorescence signal in Fraunhofer
lines.
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Detecting Fluorescence in Reflected
Radiance from Space

200 13.5

¢ Reflected Radiance 3.0

¢ Emitted Fluorescence
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Several satellites (GOSAT, GOME-2, SCIAMACHY
and OCO-2) can be used to retrieve the tiny

vegetation fluorescence sighal from space . )
& g P Figure: Luis Guanter

https://www.gfz-potsdam.de/



Global SIF image
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Frankenberg et al. (2011) GRL New global observations of the terrestrial carbon cycle
from GOSAT: Patterns of plant fluorescence with gross primary productivity, Vol. 38, L17706,
doi:10.1029/2011GL048738



GPP / (gC/m?/d)

SIF (Fs) vs. primary production (GPP)
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NDVI vs. Net Primary Production (NPP)
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NDVI is also a
good predictor of
production for the
world’s biomes

Goward & Dye (1985)
Vegetatio



Not all vegetation is alike!
SIF (Fs) vs. Primary Production (GPP) across biomes
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What causes these biome-level differences in SIF-production?
Structural effects? Physiological differences?

Guanter et al. (2012) Remote Sensing of Enviroment



Hypotheses

* Fluorescence (SIF) detects both green canopy
structure (APAR) and stress (NPQ or

photosynthetic downregulation).

* Different vegetation types have different
degrees of “physiological” vs. “structural”
control over the fluorescence signal.

* Pigment information (light absorption and
regulation) is essential to understanding
fluorescence.



Solar-Induced Fluorescence

Structural & Physiological
Contributions to SIF & Photosynthesis

“Stress”
(PRI or
AF/Fm’)

“Greenness”
(APAR, NDVI, LAI, Chl...)

Photosynthetic Rate

“Stress”
(PRI or
AF/Fm’)

“Greenness”
(APAR, NDVI, LAI, Chl...)




Broad Questions

Does SIF really work as a combined indicator of
APAR (structure) and efficiency (activity)?

Is SIF better than reflectance-based approaches
for measuring plant health (photosynthesis &
stress)?

Or, is SIF complementary to our existing toolkit of
reflectance indices and other approaches?

Are vegetation types different?
How does sampling scale affect these signals?



Practical Applications

Carbon cycle — getting the global budget right

Assessing plant health
— Productivity
— Stress effects (e.g. drought)

Precision agriculture — timing irrigation
Phenotyping — detecting plant traits

influencing stress responses, photosynthetic
rates, yield



Potential Benefits:

* Plant photosynthesis, regulation & stress
* Primary production (yield), carbon cycle

* Vegetation regulation of atmosphere & climate
(“feedbacks”)



Workshop Goals

Evaluate the current state of knowledge in
chlorophyll fluorescence (esp. SIF)

Focus on airborne applications (and ground
validation — FLEX Mission Concept)

Address technical issues (calibration,
validation, processing, data handling)

Explore synergies and ongoing options for
collaboration, information exchange (e.g.
methods or data sharing, field campaigns)




The FLEX Mission Concept

Green canopy structure o
(NDVI) ‘f/

Pigment content
(Chlindices,
Chl/Carot indices)

Pigment activity
(SIF, PRI)




