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a  b  s  t  r  a  c  t

Crop  physiological  and  phenological  status  is an  important  factor  that  characterizes  crop  yield  as  well  as
carbon exchange  between  the  atmosphere  and  the  terrestrial  biosphere  in  agroecosystems.  It is  difficult  to
establish  high  frequency  observations  of  crop  status  in  multiple  locations  using  conventional  approaches
such  as  agronomical  sampling  and  also  remote  sensing  techniques  that  use  spectral  radiometers  because
of the  labor  intensive  work  required  for field  surveys  and  the high  cost  of radiometers  designed  for
scientific  use.  This study  explored  the  potential  utility  of  an  inexpensive  camera  observation  system
called  crop  phenology  recording  system  (CPRS)  as  an  alternative  approach  for  the  observation  of  seasonal
change  in  crop  growth.  The  CPRS  consisting  of two  compact  digital  cameras  was  used  to capture  visible
and  near  infrared  (NIR)  images  of maize  in 2009  and  soybean  in  2010  for  every  hour  both  day  and
night  continuously.  In addition,  a  four  channel  sensor  SKYE  measured  crop  reflectance  and  Moderate
Resolution  Imaging  Spectroradiometer  (MODIS)  satellite  images  were  acquired  over  crop  fields.  The six
different  camera-  radiometer-  and  MODIS-derived  vegetation  indices  (VIs)  were  calculated  and  compared
with  the  ground-measured  crop  biophysical  parameters.  In addition  to VIs  that  use  digital  numbers,  we
proposed  to  use  daytime  exposure  value-adjusted  VIs.  The  camera-derived  VIs were  compared  with  the
VIs  calculated  from  spectral  reflectance  observations  taken  by  SKYE  and  MODIS.  It was found  that  new
camera-derived  VIs using  daytime  exposure  values  are  closely  related  to VIs calculated  using  SKYE  and
MODIS  reflectance  and  good  proxies  of  crop  biophysical  parameters.  Camera-derived  green  chlorophyll
index,  simple  ratio  and  NDVI  were  found  to be able  to  estimate  the  total  leaf  area  index  (LAI) of  maize  and
soybean  with  high  accuracy  and  were  better  than  the  widely  used  2g-r-b.  However,  camera-derived  2g-r-
b  showed  the  best  accuracy  in  estimating  daily  fAPAR  in vegetative  and  reproductive  stages  of both  crops.
Visible  atmospherically  resistant  vegetation  index  showed  the  highest  accuracy  in  the  estimation  of  the
green  LAI  of  maize.  A  unique  VI,  calculated  from  nighttime  flash  NIR images  called  the  nighttime  relative
brightness  index  of  NIR,  showed  a strong  relationship  with  total  aboveground  biomass  for  both  crops.  The
study  concludes  that  the  CPRS  is  a  practical  and  cost-effective  approach  for  monitoring  temporal  changes
in crop  growth,  and  it also provides  an  alternative  source  of  ground  truth  data  to  validate  time-series  VIs
derived  from  MODIS  and  other  satellite  systems.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, there have been many attempts to use remote
sensing techniques to quantitatively assess seasonal changes in
vegetation growth in order to estimate phenological and phys-
iological status of vegetation, predict yield, and understand the
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temporal features of carbon exchange between the atmosphere and
the terrestrial biosphere. There is increasing momentum toward
the expansion of the phenology network in Japan, Phenological Eye
Network (Nishida, 2007) and the United States, National Phenology
Network (NPN) (Betancourt et al., 2005). There are several tower
flux observation sites, where both downwelling and upwelling light
is measured using automatically rotating custom-ordered spectral
radiometers coupled with color digital cameras (Motohka et al.,
2010; Nagai et al., 2010; Nishida, 2007). However, unlike the
weather monitoring network, it is difficult to accumulate fixed
point spectral reflectance observations of crop growth in multiple
locations because of the high cost of spectral radiometers designed
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for scientific use. Alternatively, seasonal changes in vegetation is
investigated using low to moderate resolution satellite sensors in
various ecosystems, including natural vegetation (e.g., forests) and
crops. Commonly used satellite sensors include National Oceanic
and Atmospheric Administration (NOAA)/Advanced Very High Res-
olution Radiometer (AVHRR) (Reed et al., 1994; Schwartz et al.,
2002; White et al., 1997), SPOT/VEGETATION (Brown and de Beurs,
2008; Delbart et al., 2005; Xiao et al., 2004), and Terra/Moderate
Resolution Imaging Spectroradiometer (MODIS) (Islam and Bala,
2008; Sakamoto et al., 2005, 2010b, 2011; Wardlow et al., 2006;
Zhang et al., 2003). For satellite sensor-based high frequency obser-
vations, the observed time-series vegetation index (VI) profile will
include various noise components caused by cloud coverage and/or
mixed pixel effects because of low to moderate spatial resolu-
tion of the sensor (250 m to 1 km per pixel). Moreover, the lack
of ground-level observations of vegetation biophysical parameters
makes it difficult to interpret the temporal and spatial features
of satellite-derived VIs in reference to seasonal changes in the
biophysical parameters of vegetation. Because of this situation,
many alternative low-cost methods are proposed for continuous
monitoring vegetation phenology (Gamon, 2010). One of the less
costly methods used photodiodes, Ryu et al. (2010) developed
two-band spectral sensor using light emitting diodes (LEDs) to
monitor vegetation reflectance. Garrity et al. (2010) developed a
four-band filtered photodiode-based sensor system (Quadpd) for
continuous measurement of the normalized difference vegetation
index (NDVI) and the photochemical reflectance index (PRI) over
vegetated canopies. The use of digital cameras is also becoming
popular, especially in CO2 tower flux monitoring sites for inter-
preting the seasonal variability of the gross primary production
(Ahrends et al., 2009; Nishida, 2007; Richardson et al., 2007;
Rundel et al., 2006). Most digital cameras are designed to oper-
ate in a simple manner so that scenes can be easily saved in the
form of photographs. Because digital cameras precisely record the
appearance of photographic subjects in a non-destructive man-
ner, they can also be considered to be remote sensing devices
that objectively evaluate the visual characteristics of a subject.
High-performance compact digital cameras are currently avail-
able for less than 200 US dollars. The most recent camera models
have various features, including high-resolution imaging elements,
high ISO sensitivity, low power consumption, underwater pho-
tography functions, large storage capacity of a Secure Digital
High-Capacity Card, and an optical adjustment mechanism. These
features enable anyone to take good pictures, even if they have no
specialized knowledge or skills related to photography. The camera
parameters, including aperture and shutter speed, are automat-
ically optimized to control the incoming incident light intensity
on the charge-coupled device imaging element in response to
the various illumination conditions. Although the camera-based
optical method is no match for the photodiodes-based optical
method in terms of cost, it has the advantage that a single
digital color image itself enables visual assessment of vegeta-
tion appearance, such as vegetation fraction, leaf color and plant
type.

In agriculture, there has been a great deal of research on the
practical utilization of digital camera images for crop management,
for example, plant species identification (Meyer et al., 1999), weed
detection (Perez et al., 2000), crop growth diagnosis in terms of
vegetative fraction (Lukina et al., 1999; Woebbecke et al., 1995), leaf
area index (LAI) (Demarez et al., 2008; Shibayama et al., 2011), leaf
color (Adamsen et al., 1999; Shibayama et al., 2009a),  and nitrogen
content (Matsuda et al., 2003; Shibayama et al., 2009b).

Sakamoto et al. (2010a) devised a low-cost camera observa-
tion system called the crop phenology recording system (CPRS)
to estimate seasonal changes in the biophysical parameters of
rice, barley, and maize using daytime red, green, and blue

(RGB) and nighttime-flash near-infrared (NIR) images. However, it
remains unknown if camera-derived VIs are comparable to ground-
observed VIs, retrieved from reflectance data (measured upwelling
and downwelling radiation), or from frequent observations based
on moderate resolution satellite sensors.

The goal of this study is to verify the practical effectiveness of
CPRS for estimating crop biophysical parameters such as green and
total LAI and dry biomass, and its ability for crop monitoring. We
compared camera-derived observations with reflectance data mea-
sured by 4-band SKYE radiometer, as well as with MODIS data. This
study explores and test performance of new camera-derived VIs
using exposure values (EV) of daytime RGB and NIR images, cal-
culated from camera parameters, for estimating the biophysical
parameters of maize and soybean.

2. Materials and methods

2.1. Experimental field and crops

The experimental field is located at the University of Nebraska-
Lincoln (UNL) Agricultural Research and Development Center near
Mead, Nebraska, USA (41◦10′′46.8′N, 96◦26′′22.7′W),  where CO2
fluxes have been measured since 2001 as part of the Carbon
Sequestration Program (Verma et al., 2005). The total area of this
non-irrigated field (called site 3) is approximately 60 ha. The test
crops for 2009 and 2010 were maize (cultivar: Pioneer 33T57) and
soybeans (cultivar: Pioneer 93M11), respectively.

Maize was  planted on April 22–23 [DOY: 112–113] in 2009.
The key developmental stages of maize were observed as follows:
V1 (beginning vegetative stage) on May  20 [DOY: 140], R1 (silk-
ing stage) on July 13 [DOY: 194], R4 (dough stage) on August 10
[DOY: 222], R5 (dent stage) on August 13–28 [DOY: 225–240], and
R6 (mature stage) on September 14 [DOY: 257]. The agronomic
survey for maize, in which LAI and dry biomass weight of each
organ (green leaf, dead leaf, stem, and reproductive organ) was
measured, was conducted 14 times from May  21 [DOY: 141] to
September 9 [DOY: 252] in 2009. The planting date of soybean was
May  19 [DOY: 139] in 2010. The key developmental stages of soy-
bean were observed as follows: V1 (beginning vegetative stage) on
July 11 [DOY: 162], R1 (beginning bloom) on July 1 [DOY: 182], R4
(full pod) on August 6 [DOY: 218], R5 (beginning seed) on August
13 [DOY: 225], R6 (full seed) on September 3 [DOY: 246], and R7
(beginning maturity) on October 1 [DOY: 274]. The agronomic sur-
vey for soybean was also conducted 10 times from June 15 [DOY:
166] to October 1 [DOY: 274] in 2010, however, we did not use
the data obtained on the final day of agronomic survey, October 1
[DOY: 274]. Due to a hailstorm that caused blackouts around the
experimental field, the fixed point observations using SKYE were
stopped onSeptember13 [DOY: 256] 2010. Spectral and agronomic
data during late-September and early-October period was not crit-
ical to this study because the soybean canopy was fully senesced
and became leafless during this period prior to harvest, which was
well beyond the targeted vegetative and early reproductive growth
stages in this study.

Measurements of photosynthetically active radiation (PAR)
were obtained using the following procedures: Incoming PAR
(PARinc) was measured with Li-Cor (Lincoln, NE) point quantum
sensors pointing to the sky, and placed at 6 m from the ground. PAR
reflected by the canopy and soil (PARout) was measured with Li-Cor
point quantum sensors pointing down, and placed at 6 m above the
ground. PAR transmitted through the canopy (PARtransm) was  mea-
sured with Li-Cor line quantum sensors placed at about 2 cm above
the ground, looking upward; PAR reflected by the soil (PARsoil) was
measured with Li-Cor line quantum sensors placed about 12 cm
above the ground, looking downward (details by Hanan et al., 2002;
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Viña and Gitelson, 2005). Absorbed PAR (APAR) was calculated
as:

APAR = PARinc − PARout − PARtransm + PARsoil

fAPAR was calculated as APAR/PARinc.
Daily fraction of absorbed photosynthetically active radiation

(fAPAR) was calculated from hourly averages of radiant fluxes.

2.2. Instruments monitoring the experimental field

2.2.1. Crop phenology recording system (CPRS)
Two Nikon COOLPIX P5100 (Nikon Corporation, Tokyo, Japan)

digital cameras were utilized in the CPRS (Sakamoto et al., 2010a).
One camera was used to capture color images without any
hardware modification. In this paper, this camera is called the “RGB-
cam.” The other camera was modified to capture NIR images by
removing an NIR-cut filter inside the camera body and attaching an
NIR band-pass filter on the camera lens. This camera is referred to
as the “NIR-cam.” The center wavelength of the NIR band-pass filter
was 830 nm.  Both cameras were protected by custom-made water-
proof cases. The CPRS was connected to a 120 V AC power supply
through a handmade uninterruptible power system (UPS) consist-
ing of a lead battery and AC–DC and DC–DC converters. This UPS
worked well as a reserve power source when a massive power out-
age resulted from a hailstorm in Mead on September 13 [DOY: 256]
2010. The CPRS continued to capture RGB and NIR images following
the hailstorm damage on the experimental field.

Whereas many phenological studies install the camera for off-
nadir sampling to observe a great range of vegetation phenology,
the CPRS was installed on top of a custom-made camera station to
view in the downward direction (nadir sampling) in accord with
standard radiometric remote sensing measurements. Because the
CPRS was designed to estimate biophysical variables such as LAI,
this study employed the nadir sampling to minimize the impact of
view-zenith angle for quantitatively reflecting area of vegetation
and uncovered soil surface in the vegetation index. Although the
installation height was changed from 3.59 m in 2009 to 3.4 m in
2010, there was not much difference in the footprint area of the
camera viewing field at ground level (3.53 × 2.65 m in 2009 and
3.46 × 2.59 m in 2010). The RGB and NIR-cams were both set to the
“program auto mode”, which adjusts the exposure time (shutter
speed) and F-stop (aperture) optimally. Both cameras automati-
cally captured hourly RGB and NIR images in the interval-shooting
mode. A built-in flash device was used to capture nighttime flash
NIR images under the camera setting called “auto flash mode.”
Other camera settings were as follows: “QXGA (3.1 megapixels;
2048 pixels × 1536 pixels)” for recording image size, “FINE (image
compression rate: 25%)” for image quality, “cloud” for auto-white
balance, and “auto” for ISO sensitivity. The observation periods of
the CPRS were from May  9 [DOY: 129] to November 17 [DOY: 321]
in 2009 and from April 22 [DOY: 145] to October 17 [DOY: 290] in
2010. The time-series daytime RGB images of maize and soybean
are shown in Fig. 1.

2.2.2. Four-band SKYE radiometers
Two four-band light sensors (SKR 1850, ©Skye Instruments Ltd,

Llandrindod Wells, UK) were used in this study. The spectral bands
were as following: 536.5–561.5 nm (green), 664.5–675.5 nm (red),
704.5–715.5 nm (red edge), and 862–874 nm (NIR). The SKYE sen-
sors were installed at a fixed height of 6 m above the ground to
measure the spectral irradiance of downward incident light (with
cosine collector attached) and the upward radiance reflected by
the canopy every 30 min  from 500 to 1900 h. Since the SKYE sen-
sors have a 25◦ field of view, the footprint size was  approximately
3 m in diameter at ground level. The observation periods using the

SKYE sensor were from May  11 [DOY: 131] to October 7 [DOY: 280]
in 2009 and from April 22 [DOY: 112] to September 12 [DOY: 255]
in 2010. Reflectance was calculated as a ratio of upwelling radiance
to downwelling irradiance.

2.3. MODIS data

This study used an eight-day timeseries of 250 m and 500 m
MODIS surface reflectance data (MOD09Q1 and MOD09A1, Col-
lection 5, tile: h10v04) acquired by MODIS on board Terra in
the 2009 and 2010 growing seasons. The MODIS eight-day com-
posite product was corrected for atmospheric effects, providing
the best surface spectral-reflectance data for each eight-day
period using the constrained view-angle maximum value com-
posite method (Huete et al., 2002). The MOD09Q1 includes only
the 250 m red (Band 1, 620–670 nm)  and near-infrared (Band
2, 841–876 nm)  reflectance data. The 500 m green reflectance
data (Band 4, 545–565 nm)  from the MOD09A1 were resampled
from 500 to 250 m resolution using the nearest-neighbor method.
The dates used in the temporal profile of eight-day values were
actual collection dates recorded in the MOD09A1. The selected
MODIS-pixel location (single pixel) was the near central of the
experimental field and was the same as that used in a previous
study, which proposed a new crop phenology detection method for
maize and soybean with time-series MODIS data (Sakamoto et al.,
2010b).

3. VIs based on CPRS digital camera images

The nonlinear relationship between the digital number (DN)
of image pixels and the intensity of incident light, the so-called
gamma  characteristic of imaging elements, was  calibrated by a for-
mula using the expression of degree 6 derived from a laboratory
experiment (Matsuda et al., 2003; Sakamoto et al., 2010a).  Then,
the camera-derived VIs were calculated from the calibrated digi-
tal numbers (cDN) of RGB and NIR images through the following
procedures. Firstly, all pixels of an hourly image were averaged
to obtain hourly-averaged cDN for the red, green, and blue layers
of the RGB image. According to the laboratory experiment cali-
brating the gamma  characteristic of the imaging element of the
camera, relationship between cDN and relative light intensity was
linear when cDN was  lower than 100 (Sakamoto et al., 2010a).
Then, it was  empirically found that the second-layer cDN of the
nighttime NIR images had better sensitivity to changes in inten-
sity of NIR light. Therefore, the cDN of second-layer NIR image was
assigned as cDNNIR. Daily median cDN was  calculated from day-
time (10:00–14:00 h) and nighttime (22:00–02:00 h) periods. The
exposure value (EV), which is determined from the F-stop (aper-
ture), exposure time (shutter speed) and ISO sensitivity, is one of
the important parameters related to varying illumination intensity.
However, the daytime EV has seldom been used in previous stud-
ies for crop growth observation based on digital camera images.
The procedures for calculating EV and exposure value-adjusted cDN
(ev-cDN) are as follows:

EV = 2 ∗ log2(F) − log2(T) − log2

(
ISO
64

)
(1)

ev-cDN = cDN ∗ 2EV (2)

where cDN is the daily median value for the daytime or night-
time period and F, T, and ISO are the aperture (F-stop), exposure
time (shutter speed), and ISO sensitivity, respectively, which are
recorded in the header region of EXIF-formatted JPEG files in
RGB and NIR images. The ISO value of the daytime image always
remained at the lowest level of 64. The values of F and T of the night-
time image always remained at 2.7 and 1/60 s, respectively. The
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Fig. 1. Time-series digital color images acquired for maize in 2009 and for soybean field in 2010.

dynamic range of ISO was from 64 to 800 at nighttime under flash
illumination. For soybean monitoring, the nighttime ISO remained
at the highest level of 800 for the entire growing season because
the camera-to-object distance was too far to make the built-in flash

device sufficiently illuminate the top of the soybean canopy with-
out the highest level of ISO sensitivity.

Previous studies Sakamoto et al. (2010a, 2011a,b) suggested
an advantage of a new concept incorporating the EV into the
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camera-derived VI for assessing the three-dimensional character
of crop community such as nighttime active remote sensing. The
nighttime ev-cDNNIR was called the nighttime relative brightness
index of NIR (NRBINIR).

3.1. Camera-derived VIs investigated in the previous study

Sakamoto et al. (2011a) found that the Visible Atmospherically
Resistant Index (VARI, Gitelson et al., 2002), two-green-red-blue
(2g-r-b, Woebbecke et al., 1995), derived from daytime RGB images,
and the Nighttime Relative Brightness Index in NIR (NRBINIR,
Sakamoto et al., 2010a),  derived from nighttime flash NIR images,
had close relationships with the biophysical parameters of maize
for the whole growing season. The best camera-derived VIs that
showed the highest coefficients of determination between the bio-
physical parameters were as follows: VARI vs. green LAI (GLAI) and
green leaf biomass (GLB), 2g-r-b vs. total LAI (TLAI), and NRBINIR
vs. total dry weight of stems and leaves (SB + TLB). It was also
confirmed that VARI had a strong relationship with LAI estimates
of paddy rice until the heading stage (Sakamoto et al., 2011b).
The NRBINIR was found to be a good proxy for above-ground dry
biomass of paddy rice and the plant height of paddy rice and barley
(Sakamoto et al., 2010a).

VARI and 2g-r-b were calculated from daytime cDNred, cDNgreen,
and cDNblue (Eqs. (3) and (4)). NRBINIR (also called the nighttime
ev-cDN of NIR) was calculated using cDNNIR and exposure value
(EV) derived from nighttime flash NIR images and these camera
parameters (F-stop, shutter speed, and ISO sensitivity) (Eqs. (2) and
(5)).

The equations for VARI, 2g-r-b, and NRBINIR are

VARI (Camera) = cDNgreen − cDNred

cDNgreen + cDNred
(3)

2g-r-b (Camera) = 2 × cDNgreen − cDNred − cDNblue (4)

NRBINIR = ev-cDNNIR (night) = cDNNIR

(night) ∗ 2(2∗log2(FNIR)−log2(TNIR)−log2(ISONIR/64)) (5)

where cDNgreen, cDNred, and cDNblue are derived from the green,
red, and blue layers of daytime RGB images, respectively, and
cDNNIR (night) is derived from the second layer of nighttime NIR
images. FNIR, TNIR, and ISONIR are derived from the header region of
nighttime NIR images captured under flash light.

There are variations of VARI in terms of the selected wavelength
and optional usage of the blue band. This study used a VARI without
using blue band (see Eq. (1) in Gitelson et al., 2002). In the literature,
a vegetation index based on the same equation as Eq. (3) has often
used under different names or abbreviations such as “VI = DIF/SUM”
(Tucker, 1979), “NDI” (Perez et al., 2000), “GRVI” (Falkowski et al.,
2005; Motohka et al., 2010) and “NDVIgr” (Sakamoto et al., 2010a).

3.2. New camera-derived VIs based on daytime exposure
value-adjusted cDN

The NDVI based on the NIR and red reflectance (NDVI, Rouse,
1974) is commonly used for assessment of the quality or quantity
of vegetation in both close-range and satellite remote sensing. The
simple ratio of NIR divided by red reflectance (hereinafter called SR,
Jordan, 1969) has also been widely used for vegetation monitoring.
The chlorophyll indicator (green chlorophyll index, CIgreen), which
is calculated using green and NIR reflectance, originates from a 3-
band model as a special case for sensing total canopy chlorophyll
(Gitelson et al., 2005).

As for observations with variable incident radiation based on
digital cameras, it is too difficult to calibrate a camera in terms
of reflectance. Another approach that uses an additional optical

instrument monitoring skylight illumination loses the advantages
of manageability and the low-cost camera observation system. In
addition, the spectral sensitivity characteristic of the imaging ele-
ment used in the digital camera is not disclosed by manufacturers.
In this study, we  calculated the camera-based NDVI, CIgreen, and
SR directly from daytime ev-cDN of RGB- and NIR-cams. Thus, the
newly proposed equations for camera-derived VIs are as follows:

ev-NDVI (Camera) = ev-cDNNIR − ev-cDNred

ev-cDNNIR + ev-cDNred
(6)

ev-SR (Camera) = ev-cDNNIR

ev-cDNred
(7)

ev-CIgreen (Camera) = ev-cDNNIR

ev-cDNgreen
(8)

where ev-cDNgreen, ev-cDNred, and ev-cDNNIR were calculated from
cDNgreen, cDNred, and cDNNIR coupled with daytime EVRGB and
EVNIR using equations ((1) and (2)). Median values calculated from
daytime images observed from around 10:00 to 14:00 h were used
for the daily profile of each VIs.

3.3. VIs based on spectral reflectance of SKYE and MODIS

We compared the camera-derived VIs, VARI, NDVI, SR, and
CIgreen with VIs calculated with spectral reflectance measured by
SKYE and MODIS. The equations of the SKYE- or MODIS-derived
VIs are as follows:

VARI (SKYE or MODIS)  = �green − �red

�green + �red
(9)

NDVI (SKYE or MODIS)  = �NIR − �red

�NIR + �red
(10)

SR (SKYE or MODIS)  = �NIR

�red
(11)

CIgreen (SKYE or MODIS)  = �NIR

�green
− 1 (12)

where �green, �red, and �NIR are spectral reflectance in bands of SKYE
or MODIS.

The MODIS eight-day composite product had only one obser-
vation of surface spectral reflectance within a defined eight day
period. Therefore, MODIS-derived VIs were linearly interpolated
from eight-day intervals to daily intervals between temporally
adjacent composting periods in reference to the observation date
(day of year, DOY) recorded in MOD09A for comparing with daily
data of camera and SKYE-derived VIs.

4. Results and discussion

4.1. Temporal behavior of spectral reflectance observed by SKYE
and MODIS

The seasonal patterns of green, red, and NIR reflectance
observed by SKYE (Fig. 2A and B) were in good agreement with
those observed by MODIS (Fig. 2C and D) for both maize and soy-
bean. Whereas the green and red reflectance decreased in response
to vegetation growth, the NIR reflectance increased in the same
periods (DOY 140–190 in 2009 for maize, DOY 150–210 in 2010
for soybeans). Although the seasonal variation of green and red
reflectance are similar for the SKYE and MODIS observations for
both crop species (maize: 2–15%; soybeans: 2–20%), the maximum
NIR reflectance of SKYE (approximately 37% for maize, 51% for soy-
beans) was  7–13% lower than that of MODIS (approximately 50% for
maize, 58% for soybeans). There are many potential factors making
it difficult to compare absolute values of measured SKYE and MODIS
reflectance, which may  include differences in footprint size, view
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Fig. 2. Temporal profiles of spectral reflectance of maize and soybean field, observed by SKYE sensor (A, B) and MODIS (C, D).

angle, observation frequency, and atmospheric influences between
the sensors. It is worth to mention that the difference in the band-
widths of SKYE (25 nm for green, 11 nm for red and 12 nm for NIR)
and MODIS (20 nm for green, 50 nm for red, 35 nm for NIR) also
affects reflectance values.

4.2. Temporal behavior of the camera values (cDN and ev-cDN)

The time-series profiles of daily median cDN in green, red, blue,
and NIR bands are shown in Fig. 3A and B. As found in Sakamoto et al.
(2010a), when monitoring paddy rice and barley growth, the sea-
sonal variation of cDN was less than 15 for each band for maize and
soybean growth and much smaller than that of spectral reflectance
measured by SKYE and MODIS (Fig. 2) with much higher short-
term noise components of cDN (Fig. 2A). Temporal behavior of
cDNgreen differs substantially from that of green reflectance of SKYE
and MODIS. cDNgreen increases from the beginning of the growing
season while green reflectance showed a decrease that is a funda-
mental spectral feature of green vegetation. This implies that the
seasonal trends of cDNgreen have no meaning in terms of reflectance
properties of crops. While cDNred decreases in the beginning of the
season, it increases around DOY 180, in a time period when maize
greenness is still increasing. Thus, cDNred also cannot be interpreted
in terms of reflectance properties of maize growth.

The temporal profiles of daytime ev-cDN were com-
pletely different from those of cDN. Although the daytime
ev-cDNgreen, red, and NIR were more volatile than cDNgreen, red, and NIR
on a daily basis (Fig. 3A–D), the seasonal pattern of each ev-cDN
band was similar to that of the spectral reflectance of SKYE and
MODIS. Considering that the exposure value (EV) is automatically
adjusted with F-stop and shutter speed in accordance with the
ever-changing luminous surroundings to regulate the incoming
incident light intensity, the daytime ev-cDN can be used as a proxy
of upwelling radiance adjusted to incident irradiance. Thus, that

the long-term variability of the ev-cDN time series, which excludes
the short-term variation caused by daily weather changes, has
a close relationship with the ground-based spectral reflectance
observations of SKYE.

The NRBINIR (nighttime ev-cDNNIR) shows characteristic sea-
sonal profiles with fewer short-term fluctuating components for
entire crop growing seasons (Fig. 3E and F). This was  different from
those of the daytime cDNNIR and daytime ev-cDNNIR.

4.3. Scatter plots and temporal comparison of camera-derived VIs
with SKYE- and MODIS-derived VIs

Table 1 lists determination coefficients, R2, for the linear rela-
tionships among the VIs calculated with data taken by camera,
SKYE, and MODIS. The result reveals that camera-derived ev-VARI,
ev-NDVI, ev-SR, and ev-CIgreen correlated very closely with cor-
responding SKYE- and MODIS-derived VIs. Relationships between
camera-derived ev-VARI, ev-SR and ev-CIgreen and correspond-
ing SKYE- and MODIS-derived VIs are linear (Fig. 4A). However,
relationships between SKYE- and MODIS-derived NDVI vs. camera-
derived ev-NDVI tend to saturate above 0.7. This means that
camera-derived ev-NDVI is more sensitive to moderate to high veg-
etation density. This can be explained by the magnitude of the ratio
of NIR to red reflectances. The ratio of the camera (ev-SR) reached
3.5 whereas that of SKYE (SR) reached 28 (Fig. 4E and F). One of the
reasons of low NDVI sensitivity to moderate to high vegetation den-
sity is that the normalization procedure of NDVI, which is the ratio
of the difference to the sum (Eq. (10)), makes the NDVI insensitive
to variation in the red and NIR reflectance when NIR reflectance
is much greater than red-reflectance (the NIR/red = SR � 1). This
occurs as GLAI exceeds 2 m2/m2 (Gitelson, 2004). In contrast, the
camera ev-NIR signal is much lower than NIR reflectance of either
SKYE or MODIS. Thus, the ev-cDNNIR/ev-cDNred ratio is near 1 and
camera-derived ev-NDVI remains sensitive to change in both of
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Fig. 3. Temporal profiles of camera-derived values in maize and soybean fields; daytime calibrated digital number (daytime cDN: A, B), daytime exposure value-adjusted
cDN  (daytime ev-cDN: C, D), and NRBINIR (also called nighttime ev-cDNNIR: E, F).

Table 1
Determination coefficients, R2, of the linear relationships among the VIs derived from the digital camera, SKYE, and MODIS. The comparisons in the same vegetation index
between the different sensors are highlighted in bold style.

Explanatory Observation

SKYE MODIS

VARI NDVI SR CIgreen VARI NDVI SR CIgreen

Camera VARI 0.88 0.89 0.71 0.76 0.82 0.91 0.75 0.80
ev-NDVI 0.80 0.94 0.79 0.89 0.90 0.94 0.80 0.83
SR  0.81 0.82 0.92 0.93 0.86 0.85 0.89 0.90
ev-CIgreen 0.79 0.82 0.91 0.94 0.85 0.85 0.87 0.88
2g-r-b 0.78 0.92 0.64 0.74 0.81 0.90 0.67 0.71
NRBINIR 0.20 0.39 0.21 0.38 0.43 0.40 0.26 0.24

SKYE VARI 0.80 0.87 0.78 0.82
NDVI 0.88 0.94 0.74 0.78
SR 0.81 0.78 0.87 0.87
CIgreen 0.88 0.85 0.88 0.88
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Fig. 4. Comparisons of camera-derived-VIs (VARI, ev-NDVI, ev-SR, and ev-CIgreen) with the SKYE and MODIS-derived VIs (VARI, NDVI, SR, and CIgreen) on maize and soybean
fields.

the red signal (chlorophyll absorption/crop greenness) and NIR
signal (crop density). To achieve the same goal of increasing sensi-
tivity of the NDVI to moderate to high biomass using reflectance
data, a weighting coefficient, a < 1, was introduced in the Wide
Dynamic Range Vegetation Index, WDRVI (Gitelson, 2004). Camera
signals ev-cDNred and ev-cDNNIR themselves allow for increase of

efficiency of NDVI without using the weighting coefficient (a) used
in WDRVI.

Temporal behaviors of camera, SKYE and MODIS-derived VIs,
presented in Figs. 5–8,  are almost identical with two exceptions. For
maize, camera and MODIS-derived VARI showed pronounced peak
at DOY 180–200 (Fig. 5A and C) while SKYE-derived VARI did not.



Author's personal copy

T. Sakamoto et al. / Agricultural and Forest Meteorology 154– 155 (2012) 113– 126 121

Fig. 5. Temporal comparisons of VARI (Camera) with VARI (SKYE) (A, B) and VARI (MODIS) (C, D).

Fig. 6. Temporal comparisons of ev-NDVI (Camera) with NDVI (SKYE) (A, B) and NDVI (MODIS) (C, D).
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Fig. 7. Temporal comparisons of ev-SR (Camera) with SR (SKYE) (A, B) and SR (MODIS) (C, D).

Fig. 8. Temporal comparisons of ev-CIgreen (Camera) with CIgreen (SKYE) (A, B) and CIgreen (MODIS) (C, D).
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Table  2
Summary of estimation accuracy (root-mean-square error: RMSE) of camera-, SKYE-, and MODIS-derived VIs used to estimate the seasonal changes in biophysical parameters
of  maize and soybeans. The best estimation results are highlighted in bold style.

RMSE device Maize Soybean

VI GLAI (m2/m2) GLB (kg/ha) TLAI (m2/m2) SB + TLB (kg/ha) GLAI (m2/m2) GLB (kg/ha) TLAI (m2/m2) SB + TLB (kg/ha)

Camera VARI 0.27 170 0.55 2462 0.40 195 0.40 652
ev-NDVI 0.51 238 0.23 1754 0.13 85 0.13 349
ev-SR 0.44 212 0.25 1863 0.12 81 0.11 358
ev-CIgreen 0.53 268 0.20 1717 0.09 79 0.09 353
2g-r-b 0.69 392 0.30 1934 0.48 234 0.48 772
NRBINIR 1.13 624 0.59 457 0.15 24 0.15 109

SKYE  VARI 0.44 202 0.52 2109 0.32 173 0.33 621
NDVI 0.47  217 0.29 1833 0.24 143 0.24 506
SR 0.43  182 0.36 1921 0.17 96 0.16 400
CIgreen 0.47 222 0.21 1774 0.07 75 0.07 332

MODIS VARI 0.51 260 0.46 2051 0.26 106 0.27 265
NDVI 0.48 227 0.34 1901 0.17 89 0.18 314
SR  0.28 143 0.55 2354 0.16 67 0.16 145
CIgreen 0.39 208 0.37 2111 0.10 72 0.11 251

According to Vina et al. (2004),  VARI is expected to exhibit a con-
spicuous decrease after maize reached maximal vegetation fraction
and GLAI, which corresponds to the appearance of tassels. How-
ever, spectral bands of SKYE radiometers used in this study have a
very narrow red band (11 nm), while bands of MODIS (50 nm)  and
a digital camera (larger than 50 nm,  Hunt et al., 2010) are much
wider. Thus, saturation of reflectance in the red band at maxi-
mal  maize density explains lower sensitivity of SKYE-derived VARI
compared to either camera or MODIS. Another conspicuous differ-
ence is between camera and SKYE-derived SR for soybean (Fig. 7B).
With reference to seasonality of ev-SR (camera), the SR (SKYE) is
higher than ev-SR (camera) in the middle of the crop growing sea-
sons. This is related to the effect mentioned above that the ratio of
ev-cDNNIR to ev-cDNred is lower than that of NIR to red reflectance
of SKYE, and also to a narrow red band of SKYE than that of the
camera. This feature is pronounced in soybean more than in maize
(see Fig. 7A and B).

The seasonal patterns of ev-CIgreen matched those of CIgreen

(SKYE)in both maize and soybean (Fig. 8A and B). The scatter plots
of ev-CIgreen showed strong linear relationships with CIgreen from
both SKYE and MODIS (Fig. 4G and H). The regression lines of ev-
CIgreen against CIgreen (SKYE) (Fig. 4G) were species independent,
unlike those of ev-SR against SR (SKYE) (Fig. 4E). However in a pre-
cise sense, there were differences between the seasonal patterns of
ev-CIgreen and CIgreen (MODIS) during the late vegetative stage (DOY
210–230 in 2010) and the senescence stage of maize (DOY 230–280
in 2009). There is a possibility that MODIS-derived CIgreen is more
likely to be affected by mixed-pixel effects caused by using lower
spatial-resolution (500 m)  MODIS surface reflectance product for
green band than red and NIR bands (250 m).  For the same reason
mentioned above, the lower NIR/green reflectance ratio of SKYE
(up to 13, Fig. 4G and Eq. (12)) makes CIgreen (SKYE) much more
sensitive to moderate to high vegetation density than SR (SKYE),
resulting in the strong linear relationships between ev-CIgreen and
CIgreen (SKYE). Considering that the spectral radiometer-derived
CIgreen provided an accurate estimation of the total canopy chloro-
phyll of maize and soybeans (Gitelson et al., 2005), ev-CIgreen seems
to be a good indicator of seasonal changes in the total canopy
chlorophyll content.

4.4. Estimation accuracy of biophysical parameters for maize and
soybean

According to Sakamoto et al. (2011a), camera-derived VARI
was able to accurately estimate the (GLAI) and (GLB) of maize
whereas the 2g-r-b was more accurate in estimating TLAI. In

addition, NRBINIR (nighttime ev-cDNNIR) showed the highest accu-
racy in the estimation of the total dry weight of the stalks and leaves
of maize. This study assessed the effectiveness of these VIs for soy-
bean as well as for maize. When comparing with the biophysical
parameters, VIs derived from camera and SKYE were linearly inter-
polated to fill missing observations, which were caused by data
retrieving and temporary relocation of the camera station due to
pesticide spraying and harvesting. Then, a seven-day moving aver-
age was applied to smooth the effects of short-term variable noise
components, which are assumed to be caused by the ever-changing
outdoor illumination conditions and mixed-pixel effects in the tem-
poral profiles of VIs derived from camera, SKYE, and MODIS.

Root mean square error (RMSE) of biophysical parameters esti-
mation of maize and soybean by VIs derived from camera, SKYE, and
MODIS are presented in Table 2. In soybean, ev-VARI had poor sen-
sitivity to green LAI > 1.5 (after DOY 202 in 2010) (Fig. 9A). Another
finding of this study is that ev-CIgreen, ev-SR, and ev-NDVI were
much more effective for estimating the TLAI of both crops than
the 2g-r-b (Fig. 9B, Table 2). The RMSE of the TLAI estimation by
ev-CIgreen is comparable to or lower than those of the SKYE and
MODIS-retrieved CIgreen. The accuracy of green LAI estimation in
vegetative and reproductive stages (until DOY 246 R6 stage) in soy-
bean by ev-CIgreen was  better than that of ev-VARI. This is in contrast
to maize where ev-CIgreen performed poorly. In senescence, green
LAI in soybean decreases drastically and it prevents its accurate
estimation. Thus, it is recommended to use camera-derived ev-
VARI for estimating the green LAI for the whole growing season
of maize and ev-CIgreen in vegetative and reproductive stages (until
around R6 stage) of soybean.

There is a poor correlation (R2 < 0.5) between NRBINIR and any
other VIs derived from SKYE and MODIS (Table 1). This means
that the information content of NRBINIR (Fig. 3E and F) is differ-
ent from that of other VIs such as VARI, NDVI, SR, and CIgreen. In
maize (Sakamoto et al. 2011a), NRBINIR showed the highest esti-
mation accuracy of the SB + TLB of soybeans (Table 2, Fig. 9C).
The fixed point observation for soybean growth showed that the
nighttime ISO sensitivity of both RGB- and NIR-cams stayed at
its highest level (800) for the entire growing season. This means
that the variability of nighttime ISO sensitivity did not con-
tribute to seasonal profile of NRBINIR for soybean, whereas the
nighttime cDNNIR detected a seasonal change in the scattering
property of soybean. This provides high sensitivity of NRBINIR in
response to the SB + TLB. Sakamoto et al. (2011b) investigated the
response of ISO sensitivity and nighttime cDNNIR while varying the
camera-to-object distances using a forklift. This study found that
the night-time cDNNIR also plays an important role to enhance
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Fig. 9. Comparison between the ground-measured biophysical parameters (A: green LAI, B: total LAI, and C: above-ground dry biomass of stalks and leaves [i.e. excluding
reproductive organs]) and the camera-derived indices (A: VARI, B: ev-CIgreen, and C: NRBINIR).

Table  3
Summary of estimation accuracy of camera-derived VIs used to estimate fAPAR of maize and soybean. The best estimation results are highlighted in bold style.

VI Maize (DOY: 140–257, n = 118) Soybean (DOY: 150–246, n = 97) Maize + Soybean (n = 215)
R2 CV (%) RMSE R2 CV (%) RMSE R2 CV (%) RMSE

VARI 0.86 13.3 0.089 0.98 8.1 0.046 0.93 11.7 0.073
ev-NDVI 0.96 7.4 0.050 0.97 9.0 0.051 0.96 8.8 0.055
ev-SR  0.92 10.0 0.067 0.94 12.8 0.073 0.92 12.1 0.075
ev-CIgreen 0.94 8.6 0.057 0.95 11.9 0.068 0.94 10.9 0.068
2g-r-b  0.95 8.3 0.055 0.98 7.6 0.043 0.96 8.4 0.052

Fig. 10. Comparison between the ground-measured fAPAR and the camera-derived indices (A: ev-NDVI and B: 2g-r-b).
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the sensitivity of NRBINIR in addition to ISO sensitivity. This study
also revealed that the nighttime flash NIR images acquired by fixed
point observation are effective for assessing the aboveground mor-
phological parameter of soybean, which is difficult to estimate
by remote sensing based on solar illumination. This is consistent
with the cases of rice, barley (Sakamoto et al., 2010a),  and maize
(Sakamoto et al., 2011a).

4.5. Comparisons of the camera-derived VIs with fAPAR

Crop fAPAR shows a progressive increase during the vegeta-
tive stage until maximum canopy development, and then remains
virtually invariant during the reproductive stage, with a decrease
during the senescence stage. In the reproductive and senescence
stages fAPAR is insensitive to a decrease in crop chlorophyll content
(Gitelson et al., 2005; Viña and Gitelson, 2005). Thus, vegetation
indices, which are proxies of green LAI and chlorophyll content,
relate closely to crop fAPAR in vegetative stage. Camera-derived
2g-r-b showed the best estimation of daily fAPAR in vegetative
and early reproductive stages in maize (until DOY 257; R6 stage)
and soybean (until DOY 246; R6 stage) (Table 3). It is marginally
better than ev-NDVI when fAPAR was estimated for both maize
and soybean. As shown in Fig. 10,  the quadratic approxima-
tions of the relationship fAPAR vs. 2g-r-b are less subjected to
being saturated than ev-NDVI. 2g-r-b and ev-NDVI are not species
specific in estimating fAPAR for morphologically different crops
(maize and soybean) and their application does not required re-
parameterization of the algorithms.

5. Conclusion

In this study, we ascertained if digital camera-derived vege-
tation indices have the potential to be alternative indicators of
crop biophysical parameters to ground-based reflectance measure-
ments. We  explored the availability of day time exposure values
recorded in the header region of EXIF-formatted JPEG files by RGB
and NIR-cameras and proposed using vegetation indices, ev-NDVI,
ev-SR, and ev-CIgreen, which were calculated from the combina-
tion of daytime exposure values and cDN. The new findings are as
follows:

1. The camera time series cDNgreen and cDNNIR were inconsistent
with the spectral reflectance observations in terms of tempo-
ral behavior and seasonal dynamics. However, the new camera
data, based on daytime exposure value in the green, red and NIR
bands (ev-cDN), showed strong correlations with correspond-
ing reflectance measured by two independent sensors: SKYE and
MODIS.

2. Camera-derived ev-CIgreen, ev-SR, and ev-NDVI showed strong
linear correlations with corresponding vegetation indices
derived from SKYE and MODIS. Camera-retrieved ev-NDVI was
sensitive to wide range of green leaf area in both crops.

3. Performance of the digital camera-retrieved VIs in remote
estimation of green LAI, green leaf biomass, total LAI and above-
ground biomass excluding reproductive organs, was  evaluated.
This study found that ev-VARI worked the best for maize and
ev-CIgreen for soybeans when estimating green LAI.. ev-VARI was
also the best in estimating green leaf biomass in maize and
NRBINIR in soybean. Total LAI can be estimated accurately in both
crops by ev-NDVI, ev-SR and ev-CIgreen. Only NRBINIR was able
to accurately estimate the total biomass excluding reproductive
organs in maize and soybean.

4. Camera-derived 2g-r-b showed the best accuracy in estimat-
ing daily fAPAR in vegetative and early reproductive stages
of both crops. The same quadratic approximate model may

have applicability to both maize and soybean not requiring re-
parameterization.

Compact digital cameras are often remodeled in a short cycle
(about six months to a year). Thus, it is difficult to use the same
model for several years after a new camera product is released.
Thus, when establishing the camera observation system with a
new camera model, it is necessarily to conduct initial calibration
of camera using spectral radiometers and verify the sensitivity of
camera-retrieved vegetation indices to the biophysical parameters
of interest. The photodiode-based optical methods (Gamon 2010;
Garrity et al., 2010; Ryu et al., 2010) could provide a standard value
of vegetation indices and reflectance to calibrate the camera sys-
tem. Considering that camera-based vegetation indices have the
possibility to estimate a wide variety of bio-physical parameters,
we believe that fixed point camera observation would be an option
for acquiring high-frequency observations of vegetation simulta-
neously in multiple locations.
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