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Abstract 5 

Vegetation indices (VIs), traditionally used for estimation of green leaf area index (gLAI), have 6 

different sensitivities along the range of gLAI variability. The goals of this study were to: (1) test 7 

twelve VIs for estimating maize and soybean gLAI; (2) estimate gLAI in both crops without the 8 

need to re-parameterize the model for different crops; and (3) devise a combined VI that is 9 

maximally sensitive to gLAI along its entire range of variability. The study was performed for 10 

eight growing seasons (2001-2008) in one irrigated and one rainfed field under a maize/soybean 11 

rotation and one irrigated field under continuous maize in eastern Nebraska, USA, for a total of 12 

24 field-years. The gLAI ranged from 0 to 6.5 m2/m2 in maize and 0 to 5.5 m2/m2 in soybean. 13 

Normalized difference indices (e.g., NDVI) were most sensitive to gLAI below 2 m2/m2 while 14 

ratio indices, e.g., Simple Ratio (SR) and Chlorophyll Indices (CI), were most sensitive to gLAI 15 

above 2 m2/m2. For the crops evaluated, relationships between gLAI and VIs were species-16 

specific with the exception of the Red Edge NDVI and the CIred edge. In order to benefit from the 17 

different sensitivities of VIs along the entire gLAI range, we suggest combining VIs. For sensors 18 

with spectral bands in the red and NIR regions, the best combination was NDVI and SR (maize: 19 

coefficient of variation, CV = 20%; soybean: CV = 23%). However, this combined index is 20 

species-specific. For sensors with bands in the red edge and NIR regions, the best combination 21 

was Red Edge NDVI and CIred edge, which was capable of accurately estimating gLAI in both 22 

crops (i.e., maize and soybean) with a CV below 20% and with no re-parameterization.  23 
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 43 

The leaf area index (LAI), the ratio of leaf area per ground area, typically reported with 44 

the units m2/m2, is a commonly used biophysical characteristic of vegetation (Watson, 1947). 45 

LAI can be subdivided into photosynthetically active and photosynthetically inactive 46 

components. The former, termed green LAI (gLAI), is a metric commonly used in climate (e.g. 47 

Buermann et al., 2001), ecological (e.g. Bulcock and Jewitt, 2010), and crop yield (e.g. Fang et 48 

al., 2011) models. Because of its wide use and applicability to modeling, there is a need for a 49 

non-destructive remote estimation of gLAI over large geographic areas.  50 
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Various techniques based on remotely sensed data have been employed for assessing 51 

gLAI (see reviews in Pinter et al., 2003; Hatfield et al, 2004; 2008; Doraiswamy et al., 2003; Le 52 

Maire et al., 2008 and references within). Vegetation indices (VIs), particularly the normalized 53 

difference vegetation index, NDVI (Rouse et al., 1973) and the simple ratio, SR (Jordan, 1969) 54 

are the most widely used. However, NDVI is prone to saturation at moderate-to-high gLAI 55 

values (Kanemasu, 1974; Curran and Steven, 1983; Asrar et al., 1984; Huete et al., 2002; 56 

Gitelson, 2004; Wu et al., 2007; González-Sanpedro et al., 2008) and requires re-57 

parameterization for different crops/species. The saturation of NDVI has been attributed to 58 

insensitivity of reflectance in the red region at moderate-to-high gLAI values due to the high 59 

absorption coefficient of chlorophyll. For gLAI below 3 m2/m2, total absorption by a canopy in 60 

the red range reaches 90-95% and further increases in gLAI do not bring additional changes in 61 

absorption and reflectance (Hatfield et al., 2008; Gitelson, 2011). Another reason for the 62 

decrease in sensitivity of NDVI to moderate-to-high gLAI values is the mathematical 63 

formulation of that index. At moderate-to-high gLAI, the NDVI is dominated by near infrared 64 

(NIR) reflectance. Because scattering by cellular/leaf structure causes the NIR reflectance to be 65 

high and the absorption by chlorophyll causes the red reflectance to be low, NIR reflectance is 66 

considerably greater than red reflectance: e.g., for gLAI = 3 m2/m2, NIR reflectance is around 67 

40%, while red reflectance is below 5%. Thus, NDVI becomes insensitive to changes in both red 68 

and NIR reflectances.  69 

Other commonly used VIs include the enhanced vegetation index, EVI (Huete et al., 70 

1997; 2002), its alternative form, EVI2 (Jiang et al., 2008), and the triangular vegetation index, 71 

TVI (Broge and Leblanc, 2001). While the EVI is more sensitive to moderate-to-high LAI than 72 

NDVI, it was also found to be sensitive to canopy architecture (Gao et al., 2000), and it does not 73 
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relate well to LAI during the senescence stages (Wang et al., 2005). The TVI relates the 74 

difference between reflectance in the NIR and red regions to the magnitude of reflectance in the 75 

green region, thus, defining a triangle in a three dimensional spectral space. While the TVI is less 76 

affected by atmospheric properties when compared to typical vegetation indices, it is sensitive to 77 

differences in canopy structure and soil background (Broge and Leblanc, 2001). To minimize the 78 

sensitivities of TVI, a soil adjustment factor has been introduced in a modified version of the 79 

TVI, MTVI (Haboudane et al., 2004). The same study found that a second modified version 80 

(MTVI2) was accurate in estimating gLAI in different canopy structures that were simulated 81 

through radiative transfer models. Another investigation, aimed at examining gLAI in wheat, 82 

found that MTVI2 was more sensitive than NDVI to gLAI at higher gLAI values; however, it 83 

was sensitive to heading (i.e. flowering), which is not a component of gLAI, but nevertheless 84 

affects the reflectance of crop canopies (Smith et al., 2008).  85 

VIs that incorporate bands in the spectral transition zone between absorption by pigments 86 

and scattering by leaves/canopies, termed the “red edge region” (between 700 and 740 nm), were 87 

introduced to increase the sensitivity to moderate-to high vegetation densities and estimate total 88 

chlorophyll content and gLAI (Gitelson and Merzlyak, 1994; Gitelson et al., 2003; Dash and 89 

Curran, 2004). Radiation in the red edge region penetrates deeper into the leaves and canopies 90 

than radiation in the visible region due to a lower absorption coefficient in the former than in the 91 

latter. Thus, higher values of chlorophyll content and gLAI are required to decrease the 92 

sensitivity of red edge VIs to gLAI (Dash and Curran, 2004; Ciganda et al., 2008; Gitelson, 93 

2011). Some of the red edge VIs constitute transformations of existing VIs, such as the red edge 94 

NDVI (Gitelson and Merzlyak, 1994), which replaces the red band with one in the red edge 95 

region. Others constitute semi-analytical procedures for estimating pigment content in diffuse 96 
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media, such as the Chlorophyll Indices, CI (Gitelson et al., 2003a). While the CIs were 97 

developed for estimating chlorophyll content, they also relate closely with gLAI since total 98 

canopy chlorophyll content has been shown to relate closely with the gLAI (Ciganda et al., 2008; 99 

Peng et al., 2011). Therefore, CIs are suitable for estimating gLAI (Gitelson et al., 2003b; 100 

Brantley et al., 2011), but particularly for moderate-to-high gLAI values. For instance, it was 101 

found that VIs utilizing the red edge region (710-730 nm) were more accurate for estimating 102 

moderate-to-high gLAI in shrub canopies than normalized difference indices (Brantley et al., 103 

2011). However, this study also found that at low-to-moderate gLAI values, normalized 104 

difference indices (e.g., NDVI) perform better than the CIred edge. The MERIS Terrestrial 105 

Chlorophyll Index (MTCI) also contains a red-edge band, and was developed for the remote 106 

estimation of total canopy chlorophyll content (Dash and Curran, 2004; 2007). It has been shown 107 

that the MTCI closely relates with gLAI (Gitelson, 2011).  108 

For gLAI estimation using VIs, it is ideal that the VI selected is not sensitive to canopy 109 

architecture (e.g. leaf angle distribution), leaf structure (e.g. foliar chlorophyll distribution), and 110 

heliotropism (e.g. sun-avoidance), so that the relationships gLAI vs. VI would be applicable to 111 

different vegetation types without requiring algorithm re-parameterization. The VIs selected 112 

should also be insensitive to soil background and atmospheric effects.  113 

To minimize the effects of soil background and maximize the sensitivity to foliar 114 

chlorophyll, Daughtry et al. (2000) suggested combining two VIs by taking a ratio of a VI 115 

sensitive to chlorophyll and a VI insensitive to soil background, canopy architecture, and LAI 116 

variability. Thus, combination of indices based on the Transformed Chlorophyll Absorption 117 

Reflectance Index (TCARI), the MCARI, and the OSAVI, such as, TCARI/OSAVI and 118 

MCARI/OSAVI, were used to estimate leaf chlorophyll content in crops, minimizing the effects 119 
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of the soil background and the green LAI variation (Daughtry et al., 2000; Haboudane et al., 120 

2002). However, the goal of these studies was to remove the effect of LAI on the estimation of 121 

leaf chlorophyll content (Daughtry et al., 2000; Haboudane et al., 2002; Eitel et al., 2008; 2009), 122 

therefore, for this study, that particular set of VIs was not considered for estimating gLAI.  123 

Viña et al., (2011) evaluated the potential effects of soil background on the remote 124 

estimation of gLAI. For this, they used reflectance spectra of spherical and planophile canopies 125 

with different gLAI values under two contrasting soil backgrounds (i.e., dark and bright), as 126 

simulated by the New Advanced Discrete Model (Gobron et al. 1997), and used them for 127 

calculating three vegetation indices - EVI, MTCI and CIred edge. The EVI has been suggested to 128 

be less sensitive to background effects (Huete et al. 1997), however, the uncertainties of gLAI 129 

estimation due to soil background effects by all three indices were very similar. In the spherical 130 

canopy, the errors of EVI, MTCI and CIred edge were 0.25, 0.18, and 0.21 m2/m2, respectively, 131 

while in the planophile canopy they were 0.21, 0.20, 0.14 m2/m2, respectively.  132 

Maize and soybean plants have contrasting canopy architectures (i.e., maize has a 133 

predominantly spherical leaf angle distribution while soybean has a predominantly 134 

planophile/heliotropic leaf angle distribution), and leaf structures (i.e., maize is a monocot while 135 

soybean is a dicot) that exhibit different chlorophyll distributions along the leaf depth (de Wit, 136 

1965; Idso and de Wit, 1970; Ehleringer and Forseth, 1980). Additionally, these two species 137 

have different physiological pathways (C3 vs. C4). Based on contrasting anatomical and 138 

physiological traits, these crops are representative of many crops types, and most VIs have been 139 

shown to respond to them, thus are species- or crop-specific (Curran and Milton, 1983; Gao et 140 

al., 2000; González-Sanpedro et al., 2008). However, some indices that use red edge bands in 141 

Agronomy Journal: Published ahead of print 11 June 2012; doi:10.2134/agronj/2012.0065



their formulation have been shown to be less sensitive to differences among species (Gitelson et 142 

al., 2005; Gitelson, 2011; Brantley et al., 2011; Viña et al., 2011).  143 

The objectives of this study were to: (1) test the performance of twelve VIs for estimating 144 

gLAI in maize (Zea mays) and soybean (Glycine max); (2) identify an algorithm that does not 145 

require re-parameterization for estimating gLAI in both maize and soybean (C3 vs C4 crops); 146 

and (3) devise a “combined vegetation index” that is maximally sensitive to gLAI along its entire 147 

range of variability (i.e. 0 to more than 6 m2/m2), and is applicable to current operational 148 

satellite-based sensors such as the Moderate Resolution Imaging Spectroradiometer (MODIS) on 149 

board the National Aeronautics and Space Administration (NASA) Terra and Aqua satellites, or 150 

the European Space Agency (ESA) Medium Resolution Imaging Spectroradiometer (MERIS).  151 

 152 

Materials and Methods 153 

The study area is located at the University of Nebraska-Lincoln (UNL) Agricultural 154 

Research and Development Center near Mead, Nebraska, U.S.A. It consists of three 65-ha fields 155 

under different management practices (Table 1). The soils are deep silty clay loams including 156 

Tomek, Yutan, Filbert, and Fillmore soil series (Suyker et al., 2004). During the years of study, 157 

field 1 was under continuous irrigated maize while fields 2 and 3 were under a maize/soybean 158 

rotation, with maize during odd years and soybean during even years. Field 2 was irrigated, 159 

while field 3 received only rainfall. Overall, there were nine maize hybrids and three soybean 160 

hybrids under different planting densities (Table 1). All crops were fertilized and treated with 161 

herbicide/pesticides following UNL’s best management practices for eastern Nebraska.  162 

It has been reported that 2003 and 2005 were especially dry years, with annual 163 

precipitation values of 650 and 607 mm, respectively, which were well below the 1026 mm of a 164 
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“normal” year (Suyker and Verma, 2010). Thus, water stress occurred under low soil moisture 165 

conditions, which severely affected grain yield. For example, during dry periods in 2003, soil 166 

moisture at the 10 cm depth in the rainfed field dropped more than 40% compared to that in 167 

irrigated fields. The difference in daily gross primary production (GPP) between irrigated and 168 

rainfed fields increased during the dry periods and reached a peak value, which corresponded to 169 

40% of the maximal daily GPP value (Suyker and Verma, 2010). As a result, the ratio of grain 170 

yield in the irrigated field to that in the rainfed field was above 1.8 in 2003, while in a “normal” 171 

year with higher precipitation (e.g., 2007), it was below 1.3 (Suyker and Verma, 2010). 172 

Six small (20 x 20 m) plots (henceforth referred to as intensive measurement zones, 173 

IMZs) were established in each field for performing detailed plant measurements. The IMZs 174 

represented all major soil and crop production zones within each field (Verma et al., 2005). The 175 

IMZ results were aggregated to a field mean based on a weighted average of the relative area of 176 

the stratified zones represented by each IMZ. The gLAI was calculated from sampling a 1 m 177 

length of one or two rows (6 ± 2 plants), located within each IMZ, every 10-14 days starting at 178 

the initial growth stages (V1-V3), based on the scale by Abendroth et al., (2011), and ending at 179 

crop maturity (R5-R7) in both species. Collection rows were alternated between sampling dates 180 

to minimize edge effects. The plants collected were transported on ice (to reduce pheophytin 181 

formation) to the laboratory where they were visually divided into green leaves, dead leaves, 182 

stems, and reproductive organs. The leaf area was measured using an area meter (Model LI-183 

3100, LI-COR, Inc., Lincoln, NE), which was subsequently used to determine gLAI (green leaf 184 

area in m2 divided by ground area in m2) by multiplying the green leaf area per plant by the plant 185 

population (number of plants per m2) as counted in each IMZ (i.e. not based on planting density 186 

shown in Table 1). The values calculated from all six IMZs were averaged for each sampling 187 
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date to provide a field-level gLAI. During the eight  years of the study, the mean standard error 188 

of gLAI measurements was less than 0.15 m2/m-2 (Guindin-Garcia et al., 2012). Cubic spline 189 

interpolation (in MATLAB®) was used to estimate values of gLAI corresponding to days of 190 

reflectance measurement when that parameter was not acquired concurrently with the destructive 191 

gLAI determination.  192 

Canopy reflectance was collected using an all-terrain sensor platform, equipped with a 193 

dual-fiber system and two Ocean Optics USB2000 spectroradiometers, with a spectral range of 194 

400-1100 nm and a spectral resolution of 1.5 nm (Rundquist et al., 2004). One fiber was fitted 195 

with a cosine diffuser to measure incoming downwelling irradiance, while the second one 196 

measured upwelling radiance. The field of view of the downward-pointing sensor was kept 197 

constant along the growing season (approximately 2.4 m in diameter) by placing the 198 

spectroradiometer at a height of 5.5 m above the top of the canopy. Radiometric data were 199 

collected close to solar noon (between 11:00 and 13:00 local time), when changes in solar zenith 200 

angle were minimal. Ten reflectance spectra were measured at each collection point along access 201 

roads into each of the fields, and computed average reflectance represented each collection point. 202 

Six randomly selected plots were established per field, each with six randomly selected sampling 203 

points. Thus, a total of 36 points within these areas were sampled per field at each data 204 

acquisition, and their median per date was used as the overall field reflectance. Measurements 205 

took about 5 minutes per plot and about 30 minutes per field. The two radiometers were inter-206 

calibrated immediately before and immediately after measurement in each field. Reflectance 207 

measurements were carried out during the growing season each year over the eight-year period. 208 

This resulted in a total of 314 reflectance spectra for maize (47 in 2001, 30 in 2002, 92 in 2003, 209 

30 in 2004, 53 in 2005, 13 in 2006, 40 in 2007 and 9 in 2008) and 145 spectra for soybean (54 in 210 
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2002, 49 in 2004, 26 in 2006 and 16 in 2008), which were representative of a wide range of 211 

gLAI variation found in maize and soybean cropping systems. 212 

Using hyperspectral aerial imagery, acquired over the study site by an AISA Eagle 213 

hyperspectral imaging spectrometer, it was shown that the canopy reflectance in the fields were 214 

spatially homogeneous; thus, reflectance spectra taken along access roads were representative of 215 

the field (Viña et al., 2011). Therefore, the remotely estimated gLAI may be compared with 216 

measured field level gLAI.  217 

The twelve VIs examined in this study (Table 2) were chosen as they are representative 218 

of VIs that are widely used (e.g., NDVI, SR), some of them minimize soil background effects 219 

(e.g., OSAVI, EVI). They were also selected because of their applicability to data collected by 220 

satellite sensors such as MODIS and MERIS. These two sensors are utilized much more 221 

frequently than hyperspectral sensors, which are expensive to operate and cover limited study 222 

areas. Since a goal of this study was to find VIs applicable to MODIS and MERIS, the collected 223 

field reflectance spectra were resampled by averaging the Ocean Optics data to simulate the 224 

spectral bands of MODIS (band 3/green: 545 - 565 nm, band 1/red: 620 - 670 nm, and band 225 

2/NIR: 841 - 876 nm) and of MERIS (band 5/green: 555 - 565 nm, band 7/red: 660 - 670 nm, 226 

band 8/red: 677.5-685, band 9/red edge: 703.8 - 713.8 nm, band 10 NIR: 750 - 757.5 nm, and 227 

band 12/NIR: 771.3 - 786.3).  228 

Best-fit relationships between VIs and gLAI were determined using Eureqa (Schmidt and 229 

Lipson, 2009; http://creativemachines.cornell.edu/eureqa), an algorithm search engine that 230 

identifies and ranks potential regression models that best correspond to the input data. Users 231 

input the desired relationship, e.g. VI = f(gLAI), along with potential operations (e.g. addition, 232 

subtraction, exponential, power, etc.) and an error metric (e.g. minimize absolute error, R2, etc.). 233 
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In our case, the fitness metric used to rank the best-fit functions constituted the minimization of 234 

the root mean square error (RMSE). The inverse of these relationships (i.e., gLAI vs. VI) was 235 

utilized for gLAI estimation using VIs. After determining the best-fit relationships, a k-fold (k = 236 

10) cross-validation procedure (Kohavi, 1995) was utilized to determine the estimates of model 237 

coefficients, coefficients of determination (R2), standard error (SE), and coefficients of variation 238 

(CV) using the statistical package R (V. 2.12.2, R Development Core Team 2011). CV is the 239 

standard deviation of the gLAI vs. VI relationship divided by mean value of gLAI. The data or 240 

subgroups (i.e., different crops - maize or soybean) were randomly divided into ten sets using a 241 

random sequence generator (random.org), nine of which were used iteratively for calibration and 242 

the remaining set for validation.  243 

It is important to note that the R2 values, as well as SE and CV of gLAI estimation, 244 

represent the dispersion of the points from the best-fit regression lines. They constitute measures 245 

of how good the regression model (best-fit function) is in capturing the relationship between 246 

gLAI and VI. However, when the best-fit function is nonlinear, the R2 as well as the SE values 247 

may be misleading. To determine the accuracy of gLAI estimation, we employed the noise 248 

equivalent (NE) of gLAI (Govaerts et al., 1999; Viña and Gitelson, 2005), that was calculated as:  249 

NE ΔgLAI = RMSE(VI vs. gLAI)/[d(VI)/d(LAI)]      (1) 250 

Where d(VI)/d(gLAI) is the first derivative of VI with respect to gLAI and RMSE(VI vs. LAI) is 251 

the root mean square error of the VI vs gLAI relationship. The NE ΔgLAI provides a measure of 252 

how well the VI responds to gLAI across its entire range of variation. NE ΔgLAI takes into 253 

account not only the RMSE of gLAI estimation but also accounts for the sensitivity of the VI to 254 

gLAI, thus providing a metric accounting for both scattering of the points from the best fit 255 

function and the slope of the best fit function.  256 
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To test the applicability of VIs to estimate the gLAI of different crops with no algorithm 257 

re-parameterization, we performed an analysis of variance (ANOVA) between the coefficients of 258 

the best-fit function for both species (maize and soybean) combined, versus the coefficients 259 

obtained for each individual crop (Ritz and Streibig, 2008).  260 

 261 

Results and Discussion 262 

While both maize and soybean undergo three major stages of development (green-up, 263 

reproductive, and senescence), the temporal dynamics of their gLAI are very different (Fig. 1). In 264 

maize, the green-up period was longer (~20 days) than in soybean. Maize remained in the 265 

vegetative stage as gLAI increased until it reached the maximum gLAI, which occurred when 266 

silking began. There was a decrease in gLAI of about 1 m2/m2 during the kernel development. 267 

Then, during the final stage before maturity (dent), gLAI dropped to nearly 0 m2/m2 (Fig. 1a). In 268 

contrast, soybean flowered before maximum gLAI was reached, which occurred during pod and 269 

seed development, and decreased once the plant reached full seed (Fig. 1b). The ranges of maize 270 

and soybean gLAI variability were also different. In irrigated maize, the maximum gLAI reached 271 

6.5 m2/m2 while in soybean it did not exceed 5.5 m2/m2. For both crops, gLAI maxima in rainfed 272 

fields were typically lower than in irrigated fields (Fig. 1, Table 1). Thus, the maximum gLAI 273 

differed on per crop (i.e., maize vs. soybean) and water status (i.e. irrigated vs. rainfed) bases.  274 

All best-fit functions established between gLAI and VI for either maize (Table 3) or 275 

soybean (Table 4) were non-linear, and the shapes of the relationships VI vs gLAI differed 276 

among VIs (Fig. 2). For example, NDVI reached an asymptote at around 0.7 when gLAI was 277 

between 2 and 3 m2/m2, and became almost invariant for gLAI > 4m2/m2 in both maize and 278 

soybean (Fig. 2b). This saturation of the NDVI (Fig. 2b) reduces its functionality for gLAI 279 
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estimation at moderate-to-high gLAI values, since it generates large uncertainty in model 280 

inversions: almost the same value of VI corresponds to gLAI ranging from 4 to more than 6 281 

m2/m2. Several other normalized difference indices (green NDVI, red edge NDVI, EVI2, and 282 

WDRVI with α = 0.2), TVI and MTVI2 also showed different degrees of decreased sensitivity at 283 

moderate-to-high gLAI values (Figs 2c, d, e, h, j, k, l). SR had an exponential relationship with 284 

lower sensitivity to gLAI < 1 m2/m2 than to higher gLAI values (Fig. 2a). For gLAI > 1 m2/m2, 285 

the relationship between SR and gLAI was nearly linear. The relationships for CIs and the MTCI 286 

exhibited a similar shape, with an increase in slope at moderate to high gLAI (Figs. 2f, g, i).  287 

In this study, we found that among the twelve VIs examined, only the red edge NDVI 288 

(ANOVA: p = 0.36, n = 423, F = 1.09) and the CIred edge (ANOVA: p = 0.11, n = 423, F = 1.65) 289 

can be applied for maize and soybean with no re-parameterization of the model. Best-fit 290 

functions of the relationships gLAI vs. red Edge NDVI and CIred edge for both maize and soybean 291 

are presented in Table 5. All other VIs were crop-specific (ANOVA: p < 0.001, n = 423, F > 292 

4.5).  293 

As noted in the Materials and Methods section, R2 and SE may be misleading when 294 

comparing non-linear and linear relationships. For example, although the relationship NDVI vs 295 

gLAI resulted in high R2 values, the slope of the relationship decreased as gLAI exceeded 3 296 

m2/m2 and became close to zero at gLAI values above 3.5 m2/m2 for soybean and above 4 m2/m2 297 

for maize (Fig. 2b). With the decrease in sensitivity of VIs to gLAI (i.e., when gLAI exceeds 3 298 

m2/m2), the scattering of the points from the best-fit functions drops, as can be seen for NDVI, 299 

green NDVI, red edge NDVI and OSAVI (Figs. 2b, 2c, 2d, and 2e, for soybean). Thus, most of 300 

the VIs had similar R2 and SE (Tables 3 and 4) but very different shapes of the relationships VI 301 

vs gLAI (e.g., increasing exponential decay in NDVI vs. exponential growth in SR). Therefore, a 302 
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different accuracy metric, specifically the NE ∆gLAI, was needed to compare the performance of 303 

VIs in estimating gLAI along its entire range of variation.  304 

Fig. 3 displays values of NE ∆gLAI for normalized difference VIs, MTCI and ratio 305 

indices (SR, CIs). TVI and MTVI2 were not included in this analysis because their NE ∆gLAI 306 

values were always greater than those of normalized difference indices at low to moderate gLAI, 307 

and also were always greater than those of SR, CIs and MTCI at moderate to high gLAI. 308 

Therefore, TVI and MTVI2 did not meet the criteria for determining the best indices either for 309 

low-to-moderate, for moderate-to-high, or for the entire range of gLAI. 310 

The normalized difference VIs had asymptotic relationships with gLAI (Figs. 2b, c, d, h, 311 

l); thus, the NE ∆gLAI was lowest at gLAI below 2.5 m2/m2 for maize and below 2 m2/m2 for 312 

soybean (Fig. 3). SR and CIs had exponential relationships with gLAI (Figs. 2a, f, g); thus, the 313 

lowest values of NE ∆gLAI were at gLAI exceeding 3 m2/m2 (Fig. 3). Therefore, the normalized 314 

difference VIs were more accurate in estimating low-to-moderate gLAI while the ratio indices, 315 

SR and CIs, were more accurate in estimating moderate-to-high gLAI. 316 

While the relationship of MTCI with gLAI was asymptotic, the slope of the relationship 317 

was almost constant in a wide range of gLAI variation (Fig. 2i). Therefore, for MTCI, NE ∆gLAI 318 

varied little throughout the entire range of gLAI (Fig. 3). In the range of gLAI below 2.5 m2/m2, 319 

the MTCI had lower accuracy than normalized difference VIs and almost the same accuracy as 320 

SR and CI indices. However, in the range of gLAI > 2.5 m2/m2, it had lower accuracy than SR 321 

and CIs. Thus, it did not outperform normalized difference VIs or SR and CI indices in their 322 

respective regions of highest sensitivity to changes in gLAI.  323 

At moderate to high gLAI, the noise equivalents of normalized difference indices in 324 

soybean were higher than those in maize. This may be explained by the very different canopy 325 
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architectures and leaf structures of these crops. For the same amount of foliar chlorophyll 326 

content, the chlorophyll density on the adaxial side of soybean leaves is higher than that in maize 327 

leaves, causing a higher absorption in the red range and thus lower reflectance of soybean 328 

canopies: 2% for leaf chlorophyll above 500 mg/m2 (Gitelson et al., 2005) compared to 3-5% of 329 

maize leaves. In addition, for the same gLAI, canopy reflectance of soybean in the NIR region 330 

was higher than that of maize: for gLAI around 5 m2/m2, NIR reflectance was 60% in soybean 331 

vs. 40% in maize (Peng and Gitelson, 2011). Thus, for the same gLAI, especially within the 332 

moderate-to-high range, a NIR to red reflectance ratio is higher in soybean than in maize. 333 

Therefore, the value of gLAI above which the normalized difference indices became insensitive 334 

to gLAI was lower in soybean than in maize.  335 

Analysis of the NE ∆gLAI of VIs (Fig. 3) showed that for gLAI below 2.5 m2/m2, 336 

normalized difference VIs had the lowest NE ∆gLAI, and thus highest accuracy of gLAI 337 

estimation, while SR and CIs had the highest accuracy for gLAI > 3 m2/m2 and were the best 338 

suited for estimation of moderate-to-high gLAI. Therefore, there was no single index that had the 339 

lowest uncertainties of gLAI estimation along the entire range of gLAI variation. In order to 340 

obtain the highest possible accuracy (i.e., lowest NE ∆gLAI) across the entire range of gLAI, we 341 

suggest using more than one VI in combination, i.e., a combined vegetation index (CVI).  342 

The CVI is comprised of two VIs that are the most accurate in gLAI estimation at 343 

different ranges of gLAI: the first index for low-to-moderate gLAI (below 2.5 m2/m2) and the 344 

second index for moderate-to-high gLAI (above 2.5 m2/m2). While it is possible to scale the VIs 345 

in CVI to create a linear relationship, any scaled algorithm will be data-set dependent and may 346 

result in a decrease in the sensitivity of the VI to gLAI. For both MODIS and MERIS data, 347 

containing the red and NIR bands, we suggest using NDVI as the first index and SR as the 348 
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second index - CVI{NDVI, SR}. An NDVI value around 0.7 has been previously reported as a 349 

typical point where the NDVI vs. green LAI relationship becomes saturated (Myneni et al., 1995; 350 

Gitelson et al., 2003b). Therefore, we selected NDVI = 0.7 as a threshold for both maize and 351 

soybeans. In the range of NDVI from 0 to 0.7, the best fit functions of NDVI vs. gLAI for both 352 

crops were linear and, thus, NE ∆gLAI was constant and as low as 0.38 m2/m2 for maize (Fig. 353 

4a) and 0.4 m2/m2 for soybean (Fig. 4b).  354 

As gLAI exceeded 2.5 m2/m2, the NE ∆gLAI of SR decreased and the accuracy of gLAI 355 

estimation increased for both species (Figs. 4a and b). When SR was above 5.7 (corresponding to 356 

NDVI =0.7), the best-fit function of SR vs. gLAI was linear and, thus, NE ∆gLAI was constant 357 

and equal to 0.68 m2/m2 for maize (Fig. 4a) and 0.49 m2/m2 for soybean (Fig. 4b). A CVI 358 

comprised of two indices (NDVI and SR and, thus, using only red and NIR bands), was able to 359 

estimate gLAI ranging from 0 to more than 6 m2/m2 with a RMSE below 0.72 m2/m2 and a CV 360 

of 20% for maize, and a RMSE below 0.54 m2/m2 and a CV of 23% for soybean. However, the 361 

algorithms relating gLAI and CVI{NDVI, SR} for maize and soybean required different 362 

coefficients (Table 6) and, thus, were crop specific.  363 

Alternatively, we suggest using the red edge NDVI as the first CVI index and the CIred 364 

edge as the second CVI index – i.e., CVI{red edge NDVI, CIred edge} (Fig. 5) for data acquired by 365 

sensor systems containing red edge and NIR bands (e.g., MERIS, HYPERION). This combined 366 

index was not crop-specific at least for the species evaluated (i.e., maize and soybean), which 367 

have quite contrasting leaf and canopy structures. Therefore, this CVI does not require re-368 

parameterization, since the same algorithm coefficients can be applied to estimate gLAI in both 369 

crops (Table 6). Based on the NE ∆gLAI results, presented in Fig. 5, we suggest using a 370 

threshold of red edge NDVI equal to 0.6. For the range of red edge NDVI of 0 to 0.6, the NE 371 
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∆gLAI was 0.46 m2/m2 and for CIred edge above 3 (corresponding to the red edge NDVI value of 372 

0.6) the NE ∆gLAI was 0.55 m2/m2 (Fig. 5). For both species, CVI{red edge NDVI, CIred edge} 373 

was able to estimate gLAI along its entire range of variation (i.e., 0 to > 6 m2/m2), with a RMSE 374 

below 0.60 m2/m2 and a CV of 19%.  375 

In applications where prior knowledge about crop type is available, using sensor systems 376 

containing red and NIR bands with spatial resolutions high enough to reduce the effects of mixed 377 

pixels, the CVI{NDVI,SR} is adequate. However, in many cases, there is uncertainty about the 378 

crop type present within a pixel (e.g., coarse spatial resolutions, mixed pixels, areas of crop 379 

rotation without prior knowledge of planted crops). Thus, the CVI{red edge NDVI, CIred edge}, 380 

having a unified algorithm for crops with different leaf and canopy structures (e.g., maize and 381 

soybean), brings an objective estimation of total gLAI, even in the case of mixed pixels and 382 

crops at different phenological stages.  383 

We acknowledge that further research is needed to evaluate the CVI{red edge NDVI, 384 

CIred edge} in other crops. However, since in this study it was tested in crops that are very 385 

different (maize and soybean), it will likely be insensitive to leaf and canopy structure of crops 386 

that are not as different. It is also important to investigate the reliability of the CVIs developed 387 

when applied to estimating gLAI in other vegetation types, such as grasslands and forests. 388 

Additionally, the calibration equations for the CVIs built with simulated MODIS and MERIS 389 

bands obtained from close-range hyperspectral data should be tested against actual MODIS and 390 

MERIS data. However, it is likely that these equations are reliable since it has been shown that 391 

the coefficients of the relationships between gLAI and WDRVI, when taken at close range, 392 

remained the same as those applied to MODIS 250 m data, due to accurate atmospheric 393 

Agronomy Journal: Published ahead of print 11 June 2012; doi:10.2134/agronj/2012.0065



correction of the MODIS 250 m surface reflectance product (Gitelson et al., 2007; Guindin-394 

Garcia et al., 2012).  395 

The approach presented in this study is not limited to gLAI, as it may also be used for the 396 

remote estimation of other biophysical characteristics, such as vegetation cover, fraction of 397 

absorbed photosynthetically active radiation and gross primary production. Nevertheless, the 398 

CVIs presented in this study may not constitute the best vegetation index combinations for 399 

measuring these other vegetation characteristics. Therefore, future studies are needed to 400 

investigate which VI combinations are the most appropriate for assessing other biophysical 401 

characteristics of vegetation.  402 

 403 

Conclusions  404 

Twelve vegetation indices, calculated from simulated spectral bands of MODIS and 405 

MERIS satellite sensor systems, were evaluated for remotely assessing gLAI in two crop species 406 

with contrasting leaf structures and canopy architectures. All VIs investigated had essentially 407 

non-linear relationships with gLAI, although with different sensitivities along the range of gLAI 408 

variability evaluated. On this basis, we suggest combining vegetation that exhibit high sensitivity 409 

to changes in green LAI at particular ranges (i.e., low-to-moderate and moderate-to-high). When 410 

combined, these indices constitute suitable and accurate remotely sensed surrogates of gLAI 411 

along its entire range of variability. Specifically we suggest combining the NDVI and the SR, 412 

CVI{NDVI, SR} to be used in the case of sensors with spectral bands in the red and NIR (e.g., 413 

MODIS 250 m, Landsat TM and ETM+), although this combined index is crop-specific and 414 

requires re-parameterization of the algorithm for each crop. Alternatively, if a band in the red-415 

edge region is available (e.g., MERIS, HYPERION), we suggest combining the red edge NDVI 416 
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and the CIred edge, CVI{red edge NDVI, CIred edge}. Since it was not crop-specific, this combined 417 

index was capable of estimating gLAI with high accuracy, thus providing a suitable procedure 418 

for remotely estimating gLAI of crops with contrasting canopy architectures and leaf structures.  419 
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Fig. 1: Temporal dynamics of gLAI in a) maize in 2007 and b) soybean in 2008, in both irrigated 612 

(solid line) and rainfed (dashed line) fields. Major crop growth stages (vegetative, reproductive, 613 

and senescence) are indicated. Bars represent one standard error of destructive gLAI 614 

determination at six intensive measurement zones in each field. 615 

Fig. 2: Vegetation indices plotted versus green leaf area index, gLAI: a) Simple Ratio, b) 616 

Normalized Difference Vegetation Index (NDVI), c) green NDVI, d) red edge NDVI, e) 617 

Optimized Soil-Adjusted Vegetation Index (OSAVI), f) Chlorophyll Index Green (CIgreen), g) 618 

CIred edge, h) Triangular Vegetation Index (TVI), i) MERIS Terrestrial Chlorophyll Index 619 

(MTCI), j) Wide Dynamic Range Vegetation Index (WDRVI) α=0.2, k) Modified TVI 2 620 

(MTVI2), and l) Enhanced Vegetation Index 2 (EVI2). In all panels – maize: open squares, solid 621 

line is best-fit function; soybean: closed triangles, dashed line is best fit function. The inverse of 622 

these relationships gLAI vs. VIs along with their summary statistics are shown in Tables 3 and 4.  623 

 624 

Fig. 3: Minimal and maximal values of the noise equivalent NE ∆gLAI for a) maize and b) 625 

soybean for groupings of vegetation indices demonstrating increase of NE (decrease in accuracy) 626 

at moderate-to-high gLAI (NDVI, green NDVI, red edge NDVI, OSAVI, and WDRVI), high NE 627 

at low-to-moderate gLAI (SR, CIgreen and CIred edge) and almost invariant NE throughout the 628 

entire dynamic range (MTCI).  629 

 630 

Fig. 4: Noise equivalent NE ∆gLAI of NDVI, SR and suggested combined vegetation index 631 

CVI{NDVI, SR} for (a) maize and (b) soybean. NDVI < 0.7 is the first index and SR is the 632 

second index. 633 

Fig. 5: Noise equivalent NE ∆gLAI of red edge NDVI, CIred edge and suggested combined 634 

vegetation index CVI{red edge NDVI, CIred edge} for maize and soybean combined. Red edge 635 

NDVI < 0.6 is the first index and CIred edge is the second index. 636 

637 
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Table 1: Species, hybrid, planting density and maximum green leaf area index (gLAI) in the 24 638 
year-fields evaluated. 639 

Year Site Species Hybrid 
Planting 
Density 
(pl/ha) 

Maximum 
gLAI 

(m2/m2) 
Tillage operation Applied 

N 

2001 
1 maize Pioneer 33P67 82,000 6.1 

intensive tillage 
196 

2 maize Pioneer 33P67 83,314 6.1 196 
3 maize Pioneer 33B51 62,236 3.9 128 

2002 
1 maize Pioneer 33P67 81,000 6.0 

no-till 
214 

2 soybean Asgrow 2703 370,644 5.5 0 
3 soybean Asgrow 2703 370,644 3.0 0 

2003 
1 maize Pioneer 33B51 77,000 5.5 

no-till 
233 

2 maize Pioneer 33B51 86,667 5.5 169 
3 maize Pioneer 33B51 64,292 4.3 90 

2004 
1 maize Pioneer 33B51 84,012 5.2 

no-till 
293 

2 soybean Pioneer 93B09 370,644 4.4 0 
3 soybean Pioneer 93B09 370,644 4.5 0 

2005 
1 maize DeKalb 63-75 82,374 5.2 

no-till 
246 

2 maize Pioneer 33B51 83,200 4.8 170 
3 maize Pioneer 33G68 59,184 4.3 118 

2006 
1 maize Pioneer 33B53 84,012 5.3 conservation-plow 210 
2 soybean Pioneer 31N28 370,644 5.0 no-till 0 
3 soybean Pioneer 93M11 370,644 4.5 0 

2007 
1 maize Pioneer 31N30 80,697 6.3 conservation-plow 272 
2 maize Pioneer 31N28 78,740 5.7 no-till 183 
3 maize Pioneer 33H26 62,088 4.1 125 

2008 
1 maize Pioneer 31N30 84,469 6.5 conservation-plow 123 
2 soybean Pioneer 93M11 369,508 4.7 no-till 0 
3 soybean Pioneer 93M11 369,508 3.6 0 

 640 
641 
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Table 2: List and formulation of the vegetation indices examined.  642 
Index Equation Equation in Bands of MODIS or/and 

MERIS Reference 

Simple Ratio (SR) NIR/Red MODIS 2 / MODIS 1 Jordan, (1969) 
 
Normalized Difference 
Vegetation Index 
(NDVI) 

(NIR - Red) /  
(NIR + Red) 

(MODIS 2 - MODIS 1) /  
(MODIS 2 + MODIS 1) Rouse et al., (1973) 

 
Green NDVI (green 
NDVI) 

(NIR - Green) /  
(NIR + Green) 

(MODIS 2 - MODIS 4) /  
(MODIS 2 + MODIS 4) 

Gitelson and 
Merzlyak, (1994) 

 
Red Edge NDVI (red 
edge NDVI) 

(NIR - Red Edge) / 
(NIR + Red Edge) 

(MERIS 12 - MERIS 9) /  
(MERIS 12 + MERIS 9) 

Gitelson and 
Merzlyak, (1994) 

 
Optimized Soil-
Adjusted Vegetation 
Index (OSAVI) 

 (NIR-Red)/ 
(Red+NIR+0.16) 

 (MODIS 2 - MODIS 1)/ 
(MODIS1 + MODIS 2 + 0.16) 

Rondeaux et al., 
(1996) 

 
Green Chlorophyll 
Index (CIgreen) 

(NIR / Green) - 1 (MODIS 2 / MODIS 4) - 1 Gitelson et al., 
(1996) 

 
Red Edge Chlorophyll 
Index (CIred edge) 

(NIR / Red Edge) - 1 (MERIS 12 / MERIS 9) - 1 Gitelson et al., 
(1996) 

 
Triangular Vegetation 
Index (TVI) 

0.5*[120*(NIR - Green) - 
200*(Red-Green)] 

0.5*[120*(MERIS 10 - MERIS 5) - 
200*(MERIS 7 -MERIS 5) 

Broge and Leblanc, 
(2001) 

 
MERIS Terrestrial 
Chlorophyll Index 
(MTCI) 

(NIR-Red Edge) /  
(Red Edge - Red) 

(MERIS 10 - MERIS 9) /  
(MERIS 9 + MERIS 8) 

Dash and Curran, 
(2004) 

Wide Dynamic Range 
Vegetation Index#  (α*NIR-Red)/(α*NIR + Red)  

(α*MODIS 2 - MODIS 1) / 
 (α*MODIS 2 + MODIS 1)  
 

Gitelson, (2004) 

Modified TVI 2 
(MTVI2) 

1.5*[1.2*(NIR - Green) - 
2.5*(Red - Green)]/ 
sqrt{(2*NIR + 1)^2 – [6*NIR - 
5*sqrt(Red)] - 0.5} 

1.5*[1.2*(MODIS 2 - MODIS 4) - 
2.5*(MODIS 1 - MODIS 4)]/ 
sqrt{(2*MODIS 2 + 1)^2 – [6*MODIS 
2 - 5*sqrt(MODIS 1)] - 0.5} 

Haboudane et al., 
(2004) 

Enhanced Vegetation 
Index 2 (EVI2) 

2.5*(NIR - Red) /  
(NIR + 2.4*Red + 1) 

2.5*(MODIS 2 - MODIS 1) / (MODIS 
2 + 2.4*MODIS 1 + 1) (Jiang et al., (2008) 

#This study utilized scaled WDRVI in the form (α*MODIS Band 2 - MODIS Band 1) /(α*MODIS Band 2 643 
+ MODIS Band 1) + (1- α)/(1+ α) (Peng et al. 2011).644 
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Table 3: Best-fit functions of the relationships between green leaf area index (gLAI) and 645 
vegetation indices (VI) obtained using a cross-validation procedure for maize; x = VI, y = gLAI, 646 
R2 is the coefficient of determination, and the SE is the standard error of the gLAI estimation, in 647 
m2/m2.  648 

Index Equation gLAI vs VI R2 SE 
SR y = x0.654 - 1.24 0.86 0.66 
NDVI y = log0.6[-(x - 0.943) / 0.731] 0.87 0.64 
Green NDVI y = -{[ln(0.876 - x) + 0.66] / 0.409} 0.87 0.63 
Red edge NDVI y = log0.716(0.88 - x) - 0.623 0.90 0.54 
OSAVI y = -[1.49*ln(x)+2.71]/ln(x) 0.81 0.78 
CIgreen  y = [(x - 0.931) / 1.44]0.971 0.89 0.59 
CIred edge y = [(x - 0.15) / 0.642]0.775 0.90 0.55 
TVI y = (x / 8.85)1.73 0.65 1.05 
MTCI y = (x - 1.49)0.926 0.85 0.69 
WDRVI α=0.2 y = log0.775(1.61 - x) + 1.61 0.88 0.60 
MTVI2 y = log0.81(1.05 - x) 0.67 1.01 
EVI2 y = (x + 0.863)4.08 - 0.863 0.63 1.07 

 649 

 650 

651 
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Table 4: Best-fit functions of the relationships between green leaf area index (gLAI) and 652 
vegetation indices (VI) obtained using a cross-validation procedure for soybean; x = VI, y = 653 
gLAI, R2 is the coefficient of determination, and the SE is the standard error of gLAI estimation, 654 
in m2/m2. 655 

Index Equation gLAI vs VI R2 SE 
SR y =[(x - 1.39)0.698] / 2 0.89 0.51 
NDVI y = log0.37[x-0.526 - 1.03] 0.90 0.48 
Green NDVI y =sqrt[(0.964 - x)-1.48 - 2.35] 0.89 0.51 
Red edge NDVI y =ln[(0.805-x)(1/-0.52)-0.82] 0.91 0.46 
OSAVI y =-[0.916*ln(1/x)-1.79]/ln(1/x) 0.84 0.60 
CIgreen  y =[(x - 1.08) / 1.38]0.767 0.90 0.49 
CIred edge y =(x / 0.86)0.854 0.91 0.46 
TVI y =exp(x / 17.2) - 1.06 0.60 0.95 
MTCI y =(x - 1.03)0.981 0.80 0.67 
WDRVI α=0.2 y =-{[ln(1.79 - x) - 0.532] / 0.3} 0.90 0.47 
MTVI2 y = x1.61 / 0.172 0.82 0.64 
EVI2 y =exp(x / 0.472) - 1.3 0.76 0.75 

 656 

657 
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Table 5: Best-fit functions of the relationships between green leaf area index (gLAI) and 658 
vegetation indices (VI) for both maize and soybean combined; x = VI, y = gLAI, R2 is the 659 
coefficient of determination, and the SE is the standard error of the gLAI estimation, in m2/m2. 660 
 661 

Index Equation gLAI vs VI R2 SE 
Red Edge NDVI y = (0.155 /x - 0.173)-0.542 - 0.739 0.90 0.56 
CIred edge y = x0.898 / 0.904 0.91 0.54 
 662 

663 
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Table 6: Best-fit functions for combined vegetation indices (CVI) as used to estimate gLAI. CVI 664 
represents the combination of two vegetation indices where the first index (i.e., NDVI or red 665 
edge NDVI) are most sensitive to low-to-moderate gLAI and the second index (i.e., SR or CIred 666 
edge) are most sensitive to moderate-to-high gLAI. The threshold for NDVI was set at 0.7 and for 667 
red edge NDVI at 0.6. CV is coefficient of variation. 668 
Index Crop First index below 

threshold 
Second index above 
threshold 

CV 
(%) 

CVI{NDVI, SR} Maize (NDVI - 0.28)/0.18 (SR + 1.0)/3.5 20 
CVI{NDVI, SR} Soybean (NDVI - 0.27)/0.22 (SR + 3.2)/6.2 23 

CVI{Red Edge NDVI, CIred edge} Maize and Soybean (red edge NDVI - 
0.13)/0.14 (CIred edge – 0.63)/0.95 20 

 669 

 670 

 671 
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