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5 Noninvasive Quantification 
of Foliar Pigments
Principles and Implementation

Anatoly Gitelson and Alexei Solovchenko

5.1  INTRODUCTION

Pigments are central to the functioning of photosynthetic apparatus and hence for all vital functions 
of plants. Green chlorophylls (Chl), represented by Chl a and b, the primary photosynthetic pigments, 
absorb light energy and eventually convert it into chemical energy in the form of electron flow 
[1–3]. Yellow-to-orange carotenoids (Car) are the accessory pigments that augment Chl in light 
absorption and serve the indispensable function of protection of the photosynthetic apparatus from 
photooxidative damage, mostly via elimination of reactive oxygen species and thermal dissipation of 
excessively absorbed light energy via operation of the xanthophyll cycle [1,4,5]. Foliar Car are usually 
represented by carotenes, mostly β-carotene, and xanthophylls—lutein, zeaxanthin, violaxanthin, 
antheraxanthin, and neoxanthin [6]. The retention of carotenoids in the progress of chlorophyll 
breakdown has been suggested as a mechanism of photoprotection during leaf senescence [7,8]. 
Changes in leaf carotenoid content and its proportion to chlorophyll are widely used for diagnosing 
the physiological state of plants during development, senescence, acclimation, and adaptation to 
different environments and stresses [9].

Another widespread pigment group, flavonoids include red-colored anthocyanins (AnCs) 
and pale-yellow flavonols (Flv) important for optical shielding of plant tissues in the green and 
UV-to-blue regions of the spectrum, respectively [10–12]. In leaves, they localize in vacuoles of 
epidermal cells or those just below the adaxial epidermis, but occasionally also in the cells of 
abaxial epidermis, palisade, and spongy mesophyll [13]. The induction of AnC biosynthesis occurs 
as a result of deficiencies in nitrogen and phosphorus, wounding, pathogen infection, desiccation, 
low temperature, UV irradiation, and so on, so it is generally accepted that AnCs fulfill important 
physiological functions by being involved in adaptation to numerous stresses and environmental 
strain reduction [14–16]. Some lines of evidence suggest that the protective effects of anthocyanins 
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are related to their ability, via screening and/or internal light trapping, to reduce the amount of 
excessive solar radiation reaching photosynthetic apparati [11,15].

There are also more exotic pigment groups like betalains [17,18] and secondary keto-carotenoids 
possessing optical properties very similar to those of AnC [7]. Apart from their photosynthetic and 
photoprotective functions, the pigments serve a plethora of other important functions like attraction 
of pollinators.

Since pigments are important for the function of plant organisms, their biosynthesis and 
catabolism are tightly regulated, making them informative markers of plant physiological condition 
and, ultimately, plant productivity. There are several reasons leaf pigmentation is important from 
an applied perspective to both land managers and ecophysiologists [19]. First, the amount of solar 
radiation absorbed by a leaf is largely a function of the foliar contents of photosynthetic pigments; 
therefore, Chl content in many situations determines the photosynthetic potential and hence primary 
production [20–22]. Second, much of leaf nitrogen is represented by and correlates with Chl, so 
quantifying Chl gives an indirect but precise measure of nitrogen nutrition status [22,23]. Third, 
plant stresses are manifested by directed and specific changes in pigment composition. Thus, the 
content of Car generally increases and that of Chl decreases under stress and during senescence [9]. 
The relative contents of photosynthetic pigments reflect the effects of abiotic factors such as light; 
for example, sun leaves have a higher Chl a/Chl b ratio [24] and so quantifying these proportions can 
provide important information about relationships between plants and their environment.

Traditional methods of “wet” pigment analysis (extraction with subsequent spectrophotometry 
or high-pressure liquid chromatography (HPLC) are destructive and do not permit repeated 
measurement on the same samples, so it is impossible to follow the changes of vegetation condition in 
time. These techniques are time consuming and expensive, thus making assessment of the vegetation 
state on the landscape and ecosystem scales impractical. An alternative solution for leaf pigment 
analysis is represented by nondestructive optical methods. Monitoring plant physiological status 
via measuring leaf optical properties such as absorbance and/or reflectance possesses a number of 
distinct advantages over traditional destructive approaches. The most important ones are simplicity, 
sensitivity, reliability, and a high throughput, translating into their applicability on a large spatial 
scale and saving a lot of labor [25].

Developing and implementing methods for quantification of pigment content and composition via 
nondestructive measurement of optical properties would provide a deeper insight into the physiology 
of photosynthetic apparatus (regulation of light harvesting and photochemical utilization, balance of 
photoprotection and photodamage) under favorable conditions and under stress [20,25,26].

The absorption of light by plant pigments allows tracking their content-affecting spectra of optical 
properties, absorbance, transmittance, and reflectance. Accurate estimation of pigment content using 
absorbance (α) and reflectance (ρ) spectra requires close linear relationships with the content of the 
specific pigment of interest. Importantly, these relationships should have a minimal effect of other 
pigments. Since the absorption bands of the pigments often overlap, it is a challenging problem; 
hence, development of quantitative measures of α and ρ response to specific pigment content is a 
prerequisite for assessment of the potential for nondestructive technologies based either on α or ρ 
spectroscopy.

Kubelka-Munk theory [27,28] laid a basis for reflectance spectroscopy, suggesting that the 
relationship between remission function, which in reality is reciprocal reflectance, ρ−1 [29], is related 
to the ratio of absorption to scattering coefficients. However, this assumption was not tested for leaves 
containing widely variable pigment content and composition, which makes the limits of reflectance 
spectroscopy, as well as whether the requirements for spectral regions could be used for estimating 
contents of four types of foliar pigments—chlorophylls, Chl; carotenoids, Car; anthocyanins AnC; 
and flavonoids, Flv—uncertain. Thus, development and implementation of reflectance-based 
techniques requires answering three pivotal questions. First, is it possible to describe the leaf as a 
medium with a close, linear ρ−1 vs. α relationship throughout the visible and near-infrared (NIR) 
ranges of spectrum, as required by Kubelka-Munk theory? Second, what are the spectral ranges 
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where the abovementioned requirement is fulfilled? Third, what would be an objective criterion for 
discerning the ranges where it is not fulfilled? Answering these questions, requiring a thoughtful 
study of the ρ−1 vs. α relationship in leaves with widely variable pigment (Chl, Car, AnC, and Flv) 
contents, shall reveal the possibilities and limitations of reflectance-based techniques. It may lay a 
background for informed selection of spectral bands for devising new and improving existing models 
for reflectance-based estimation of pigments as well as for developing absorbance-based techniques 
applicable in cases where reflectance-based approaches fail.

Attempts to apply nondestructive methods based on optical spectroscopy for assessment of plant 
physiological state via measuring pigment content have been undertaken for several decades [30–
34]. The situation has changed drastically during the last few decades, when a significant amount 
of research was dedicated to the development of techniques for nondestructive evaluation of leaf 
pigments. Here, we provide an overview of foliar absorbance and reflectance spectral features 
with an emphasis on in situ specific optical properties of the pigments. We also give the rationale 
for quantitative responses of absorbance and reflectance to each pigment content. Based on this, 
we demonstrate possibilities and limitations of reflectance- and absorbance-based approaches for 
estimating foliar pigment content. We attempt to find the spectral regions where assumption of a 
close linear ρ−1 vs. α relationship holds so reflectance spectroscopy provides accurate estimation 
of foliar pigment content. Furthermore, we tackle quantification of the pigments that absorb in 
spectral regions where reflectance is insensitive to the pigment content. In these regions, absorbance-
based techniques are the only way to nondestructively assess pigment content. In view of these 
limitations, we present models for accurately estimating Chl, Car, AnC, and Flv, as well as generic 
algorithms for estimating Chl and AnC. Finally, we compare the efficiency of informative spectral 
band selection for pigment estimation by established methods (neural networks, partial least-square 
[PLS] regression, vegetation indices, uninformative variable elimination PLS) with that of the 
specific spectral responses introduced in this chapter.

5.2  SPECTRAL CHARACTERISTICS OF LEAVES

Three data sets were used in this study: Virginia creeper [Parthenocissus quinquefolia (L.) Planch.] 
with a widely varying content of pigments, especially of AnC and Flv [35]*; ANGERS recorded in 
2003 at INRA in Angers (France), including 308 leaves of more than 40 plant species [36], as well 
as transmittance and reflectance spectra†; and the data set composed of 90 leaves (beech, chestnut, 
and maple) described in [29,37].‡

The leaves of the Virginia creeper illustrate how variable the inherent (absorbance and 
transmittance) and apparent (reflectance) optical properties are (Figure 5.1). In the blue range (400–
500 nm), absorbance was very high, varying widely between 1 and 3 and increasing toward shorter 
wavelengths in all leaves studied. It was affected by Chl, Car, and Flv. Accordingly, transmittance 
of the leaves was below 0.1 and varied about 10-fold. In contrast, reflectance of the leaves converged 
to a narrow range around 0.1, showing small variability.

In the green range (500–600 nm), the absorbance and transmittance varied widely, with two 
ranges of convergence—around 500 and 600 nm, where the change in pigment content only slightly 
affected both traits (Figure 5.1a and b). Optical properties around 500 nm were governed by Chl, Car, 
and AnC and beyond 530 nm—by Chl and especially AnC, whose absorption in situ peaks around 
550 nm [40]. Reflectance in the green was variable, but much less than absorbance and transmittance.

In the red range (600–690 nm), optical properties were affected by Chl absorption that peaked 
in situ around 670 nm (e.g., [38,39]); the magnitude of the absorbance peak increased gradually 

*	https://www.researchgate.net/publication/319213426_Foliar_reflectance_and_biochemistry_5_data_sets
†	 ANGERS Leaf Optical Properties Database (ecosis.org)
‡	 https://www.researchgate.net/publication/319619724_Dataset_of_foliar_reflectance_spectra_and_corresponding_

pigment_contents_for_Aesculus_hippocastanum_Fagus_Silvatica_Acer_platanoides_published_widely

https://www.researchgate.net/publication/319213426_Foliar_reflectance_and_biochemistry_5_data_sets  
https://www.researchgate.net/publication/319619724_Dataset_of_foliar_reflectance_spectra_and_corresponding_pigment_contents_for_Aesculus_hippocastanum_Fagus_Silvatica_Acer_platanoides_published_widely  
https://www.researchgate.net/publication/319619724_Dataset_of_foliar_reflectance_spectra_and_corresponding_pigment_contents_for_Aesculus_hippocastanum_Fagus_Silvatica_Acer_platanoides_published_widely  
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with the increase in [Chl] (Figure 5.1a). In the transmittance spectra, Chl absorption manifested 
itself as a trough whose depth steadily grew with an increase in [Chl] and transformed into a 
deep minimum in the spectra of leaves with a high [Chl] (Figure 5.1b). In the reflectance spectra, 
Chl absorption revealed itself as a trough (in the case of low-to-moderate [Chl]), although in the 
case of leaves with moderate-to-high [Chl], reflectance in the red converged to a narrow range 

(a)

(b)

(c)

FIGURE 5.1  (a) Absorbance, (b) transmittance, and (c) reflectance spectra of 24 Virginia creeper leaves with 
widely varying pigment contents and composition. The spectral range shaded with green is solely governed by 
chlorophylls, Chl; the range shaded with red is governed predominantly by anthocyanins, AnC (when they are 
present) and Chl; the range shaded in gray is governed jointly by Chl, Car, and flavonoids, Flv, as well as AnC 
in the long-wave part of blue region. Arrows show direction of increasing leaf pigment content.
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around 0.1 (Figure 5.1c). Thus, the behavior of reflectance in the red range differed from that of 
absorbance or transmittance.

The differences in the spectra depicting absorbance and reflectance were further studied in 
leaves with contrasting pigment content and composition (Figures 5.2 and 5.3). We compared 
absorbance and reciprocal reflectance of representative leaves from these data sets. In the Virginia 
creeper leaf with a moderate [Chl], α and ρ−1 were closely related in a linear manner in spectral 
ranges between 690–750 nm and 515–600 nm (determination coefficient R2 = 0.98)—Figure 5.2. 
However, at wavelengths shorter than 515 nm and between 600 and 695 nm, the slope of the α vs. ρ−1 
relationship decreased (Figure 5.2b). A strong hysteresis appeared in the range 600–695 nm: for the 
same absorbance, reciprocal reflectance was significantly higher than in the blue range 400–515 nm. 
Moreover, in the shortwave blue range with α > 2, ρ−1 decreased with an increase in absorbance 
(Figure 5.2). Thus, in Virginia creeper leaves with α ≥ 1, reciprocal reflectance cannot be considered 
as a proxy for absorbance.

The ANGERS data set contained leaves with a wide [Chl] and [Car] variation ([31], Figure 5.3). 
In the spectral ranges 520–560 nm and 695–750 nm, the ρ−1 vs. α relationship was linear, with 
R2 = 0.99 (Figure 5.3b). In the range 560–695 nm, the relationship was essentially nonlinear 

(a) (b)

FIGURE 5.2  (a) Absorbance and reciprocal reflectance spectra of Virginia creeper leaf with a moderate 
[Chl] = 22 µg cm−2 and [Car] = 5 µg cm−2, a very high [Flv] = 165 µg cm−2, and a small [AnC] = 0.07 µg cm−2; 
(b) reciprocal reflectance vs. absorbance of the same Virginia creeper leaf.

(a) (b)

FIGURE 5.3  (a) Absorbance and reciprocal reflectance spectra of a leaf from the ANGERS data set with a 
high [Chl] = 54 µg cm−2 and [Car] = 12 µg cm−2, and a small [AnC] = 2.2 µg cm−2; (b) reciprocal reflectance 
vs. absorbance of the same leaf.
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with a strong hysteresis and negative slope between 650–680 nm. At shorter wavelengths 
(beyond 520 nm), the slope of the relationship decreased drastically and was close to zero at 
wavelengths λ < 500 nm; that is, ρ−1 remained virtually invariant while absorbance varied 
widely (Figure 5.3a).

Thus, in both leaves of nonrelated species (Figures 5.2 and 5.3), the ρ−1 vs. α relationships were 
close and linear in the green (520–560 nm) and red edge (695–750 nm) ranges and essentially 
nonlinear in the blue and red. This circumstance imposes a very strict limitation on the possibility 
of foliar pigment content retrieval via reflectance spectroscopy.

5.3  IN SITU-SPECIFIC OPTICAL PROPERTIES OF FOLIAR PIGMENTS

ANGERS is a data set with probably the widest [Chl] variation among existing data [36]. However, 
it does not represent leaves with moderate-to-high [AnC]: only in 12 of 308 leaves [AnC] exceeded 
5 µg cm−2, with a maximal value of 17 µg cm−2. Thus, we used this data set to study optical properties 
of leaves with high variability of [Chl] and [Car] contents against a slightly variable background of 
[AnC]. The Virginia creeper leaves had widely variable AnC content [35]; in addition, it is the only 
data set we know where [Flv] and optical properties are presented. This data set was used to study 
in situ optical properties of Flv and AnC.

To quantify the effect of each pigment’s content, [p], on absorbance and reciprocal reflectance, α 
vs. [p] and ρ−1 vs. [p] relationships were established at each wavelength (λ) and for each pigment. We 
calculated the determination coefficient (R2) for linear relationships α vs. [p] and ρ−1 vs. [p] and the 
slopes of these relationships at each λ. R2 is a quantitative measure of how well the best-fit function 
performs as a predictor of α or ρ−1, specifically, how much of their variability can be explained by 
the variation in the corresponding pigment content. Slopes of α vs. [p] and ρ−1 vs. [p] relationships 
represent sensitivity of absorbance and reciprocal reflectance to the pigment content. However, none 
of the parameters, either R2 or the slope, is an accurate quantitative measure of each pigment’s 
effect on α and ρ−1. The spectra of the slope per se do not impart the strength of the corresponding 
relationships, as the R2 spectra bear no information about the sensitivity of α or ρ−1 to each pigment’s 
content. The quantitative measure of the effect of each pigment on absorbance combining these two 
parameters is a slope/NRMSE ratio for the α vs. [p] relationship [35], which can be calculated at 
each wavelength:

	 Rα = (dα/d[p])/NRMSE	 (5.1)

where Rα is the response of α to a pigment content [p], and dα/d[p] and NRMSE are the first 
derivative and normalized root mean-square error of the α vs. [p] relationship, respectively.

In the same way, the quantitative measure of the effect of each pigment on reciprocal reflectance 
is the slope/NRMSE ratio of the ρ−1 vs. [p] relationship at the corresponding wavelength:

	 Rρ−1 = (dρ−1/d[p])/NRMSE	 (5.2)

where Rρ−1 is the response of ρ−1 to a pigment content [p], and dρ−1/d[p] and NRMSE are the first 
derivative and normalized root mean-square error of the ρ−1 vs. [p] relationship.

Both measures, Rα and Rρ−1, represent the spectral response of absorbance and reciprocal 
reflectance to the content of a specific pigment.

The first question that needed an answer was how α and ρ−1 responded to [Chl] and how close 
the α vs. [Chl] and ρ−1 vs. [Chl] relationships are. We carried it out for the ANGERS data set [31] 
with the widest [Chl] variation. The spectra of R2, α response (Rα), and ρ−1 response (Rρ−1) to [Chl] 
are presented in Figure 5.4. The main feature of both traits was the disparate spectral behavior of 
Rα and Rρ−1. In the blue range (400–500 nm), R2 for the α vs. [Chl] relationship was above 0.7, but 



141Noninvasive Quantification of Foliar Pigments

it was below 0.3 for the ρ−1 vs. [Chl] relationship (Figure 5.4a). The same was the case in the range 
600–680 nm. Only in the green and red edge ranges the R2 of both the α vs. [Chl] and ρ−1 vs. [Chl] 
relationships comparable, reaching R2 around 0.9 in the red edge range, 700–710 nm. Importantly, (i) 
in the ranges of highest Chl absorption—the blue (400–500 nm) and the red (around 670 nm)—Rα 
response to [Chl] was twofold higher than Rρ−1 response (Figure 5.4b), and (ii) the green edge and 
red edge (700–710 nm) were the only spectral ranges where Rρ−1 > Rα and Chl was the main factor 
governing ρ−1 (Figure 5.4b).

The next step was to compare the spectral response of reciprocal reflectance to the contents of all 
three pigments identified in the ANGERS data set (Figure 5.5). The Rρ−1 spectra for Chl, Rρ−1(Chl), 
and Car, Rρ−1(Car) were almost identical. It is not surprising because in the Angers data set, [Car] 
correlated very closely (R2 > 0.9) with [Chl]. Thus, [Chl] and [Car] were not really independent 
variables in this data set. Chl and Car contents often vary synchronously during ontogeny and 
senescence [7,9]. Such a conservative pigment composition is expected since the photosynthetic 
pigment apparatus is under tight regulation to achieve both maximum efficiency of carbon fixation 
by and mitigate the risk of photooxidative damage to the leaf [7].

(a) (b)

FIGURE 5.4  Characteristics of α vs. [Chl] and ρ−1 vs. [Chl] relationships calculated for 308 leaves constituting 
the ANGERS data set: (a) spectra of determination coefficient, and (b) spectra of α response, Rα, and ρ−1 
response, Rρ−1, to Chl content.

FIGURE 5.5  Spectral response of reciprocal reflectance, Rρ−1, to Chl, Car, and AnC contents calculated for 
308 leaves constituting the ANGERS data set.
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The main spectral feature of the Rρ−1 spectra was low values of this trait in the blue (absorption 
bands of Chl and Car) and red (absorption band of Chl) ranges (Figure 5.5). Two distinguishable 
peaks of Rρ−1(Chl) were around 600 and 700 nm. Importantly, both peaks were positioned in the 
ranges where absorption by Chl is much smaller than in the red absorption band of this pigment, 
where leaf reflectance is saturated at small [Chl] < 20 µg cm−2 [39].

Rρ−1(AnC) was high in the green range, around 550 nm (the main AnC absorption region in 
situ) [40,41]. However, Rρ−1(AnC) ≅ Rα(Chl), so ρ−1 in this region was affected by Chl to the same 
degree as by AnC.

The responses Rα and Rρ−1 to [Chl], [AnC], and [Flv] were compared for Virginia creeper 
leaves with highly variable [AnC] and [Flv] and low-to-moderate [Chl]. As for the Angers data set 
containing leaves with much higher [Chl], Rα(Chl) was higher than Rρ−1(Chl) in the ranges of highest 
Chl absorption, blue and red (Figure 5.6a). Rρ−1(Chl) > Rα(Chl) around 640 and 700 nm, located 
far from the red Chl absorption band. Notably, both α and ρ−1 responses to Chl were negative in the 
green range (Figure 5.6b) due to the negative slopes of α vs. [Chl] and ρ−1 vs. [Chl] relationships 
(with increases in [Chl], both responses, α and ρ−1, decreased). A majority of leaves in this data set 
had high amounts of [AnC] and small amounts of [Chl], and leaves with moderate [Chl] contained 
small AnC. In leaves with small [Chl], absorbance in the green range was high, governed by [AnC], 
and with increasing [Chl], it decreased due to decreasing [AnC].

Rα(AnC) > Rρ−1(AnC) was recorded in the range 520–560 nm, where absorption of AnC peaks 
in situ (Figure 5.6b) due to saturation of reflectance at high [AnC] when α exceeded 2.5. In the range 
400–460 nm, Rα(Flv) was five- to sevenfold higher than Rρ−1(Flv) (Figure 5.6c). In this range Chl, 
Car, and Flv absorbance and reflectance saturated at a low [Chl] even in slightly green leaves; thus, ρ−1 
became almost invariant with respect to pigment content (Figure 5.1c). This is illustrated well in Figure 
5.7b, where Rρ−1(Chl) and Rρ−1(Flv) were indistinguishable and very small. In contrast, the responses 
of absorbance Rα(Chl) and Rα(Flv) were much higher, and in the narrow spectral range 400–430 nm, 
response Rα(Flv) was higher than that of Rα(Chl) (Figure 5.7a). This finding gives an important insight 
into identification of a spectral range suitable to [Flv] retrieval from absorbance spectra.

Above, we compared absorbance and reflectance vs. pigment content relationships in leaves using 
large data sets collected across plant species, developmental stages, and physiological states. The 
analysis made obvious certain limitations of reflectance-based quantification of the foliar pigments, 
especially in the blue and red manifesting itself as a failure of the close linear relationship between 
reciprocal reflectance and absorbance. These limitations can be understood in the frame of Kubelka-
Munk theory, which was developed for the case of a relatively weak absorber evenly distributed in a thick 
layer of a highly reflective substance [27]. Considering the large extinction coefficients of Chl and other 
pigments [42], their high content in and structural complexity of the leaf and its photosynthetic apparatus 
[43], it becomes clear that in many cases, the foliar pigments violate these assumptions. Indeed, leaves 
with absorbance exceeding unity are rather “strong absorbers” in Kubelka-Munk terminology, and 
distribution of pigments in the cells is far from uniform [13,38]. Furthermore, superficial structures of 
plants such as leaf cuticle give rise to backscattering [44]. The contribution of light backscattered by 
weakly pigmented superficial structures of the leaf (cuticle and epidermis) to the total leaf reflectance 
bears no information about the leaf pigment composition and decreases the “information payload” of 
total reflected signal. This contribution increases dramatically toward shorter wavelengths of the visible 
part of the spectrum but bears scarce information on the biochemical composition of the leaf.

These limitations obviously affect the spectral ranges suitable for [Chl], [Car], [AnC], and [Flv] 
estimation. As a result, a reflectance-based approach can be implemented only in certain spectral 
ranges positioned outside the main absorption bands of the pigments, mainly in the long-wave part 
of the visible range, red edge, and NIR [33,34]. In view of these restrictions, it is important to have a 
quantitative criterion of the suitability of a certain spectral range for application of the reflectance-based 
techniques, which has not been defined so far. In this work, we try to close this gap by suggesting traits 
Rα and Rρ−1 as quantitative measures of the α and ρ−1 response to content of each pigment.
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(a)

(b)

(c)

FIGURE 5.6  Spectra of absorbance response, Rα, and reciprocal reflectance response, Rρ−1, to content of 
(a) chlorophyll [Chl], (b) anthocyanin [AnC], and (c) flavonoids [Flv] in 24 leaves of Virginia creeper with 
highly variable [AnC] and [Flv] and low to moderate [Chl].
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It was shown that responses Rα and Rρ−1 to Chl are very different across the spectral region 
and greatly depend on pigment content and composition. Thus, spectral responses Rα and Rρ−1 
complement specific absorption coefficients, bringing the quantitative effect of each pigment with 
background of other pigments on α and ρ−1. These findings using quantitative spectral responses to 
each pigment group are in accord with the results of previous studies that identified optimal spectral 
bands for retrieval of foliar pigment content [19,34,45,46].

5.4  PIGMENT CONTENT ESTIMATION

5.4.1 C hlorophylls

For individual leaves and two contrasting data sets, it was shown that responses Rα(Chl) and 
Rρ−1(Chl) are very different across the whole spectral range and greatly depend on pigment content 
and composition. Essentially, in the red edge region (around 700 nm), Rρ−1 > Rα (Figures 5.4b and 
5.6a) and the spectral shape and magnitude of the responses were almost identical despite great 
variation in pigment content in the data sets studied. This means that ρ−1 in the red edge region 
may be used as a term in algorithms for accurate and, probably, generic measure of [Chl] (Figures 
5.8a and 5.9a). The only obstacle to achievement of a high accuracy of [Chl] estimation using ρ−1 is 
nonzero values of absorbance and reciprocal reflectance in the near-infrared spectral range where 
Chl does not absorb (Figure 5.1a). Merzlyak, Chivkunova, Melo, and Naqvi [47] have shown that 
this is apparent absorbance caused by uncertainties of absorbance and reflectance measurement. 
These uncertainties may affect accuracy of [Chl] estimation, especially for low-to-moderate [Chl] 
[29]. Thus, for accurate [Chl] estimation subtraction of αNIR and ρNIR

−1 (NIR beyond 760 nm) from 
αRE and ρRE

−1 (RE around 710 nm), is required:

	 Chl ∝ αRE – αNIR	 (5.3)

	 Chl ∝ ρRE
−1 – ρNIR

–1	 (5.4)

Subtraction of αNIR and ρNIR
–1 makes (αRE – αNIR) and (ρRE

−1 − ρNIR
–1) almost proportional to [Chl] 

(i.e., the relationships go to the origin) and it brings a significant increase in accuracy (Figures 5.8b 

(a) (b)

FIGURE 5.7  The responses of absorbance, Rα (a), and reciprocal reflectance, Rρ−1 (b), to pigment contents 
in the blue range of the spectrum in 24 Virginia creeper leaves. Note that ρ−1 responses to Flv and Chl are 
identical, showing that there is no way to distinguish between these pigments using reflectance, whereas the 
Rα response to Flv in the range 400–430 was higher than that to Chl. ((a): Modified from A. Gitelson et al. 
Journal of Plant Physiology, 218: 2017, 258–264. [35])
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and 5.9b). Both models yield very accurate [Chl] estimation using absorbance and reflectance, with 
the determination coefficient above 0.98 and NRMSE < 2.4%.

A three-band model was suggested for estimating [Chl] in the form [29]:

	 Chl ∝ (ρRE
−1−ρNIR

–1) × ρNIR	 (5.5)

The third item, ρNIR, was introduced to take into account variability in leaf thickness and density 
that could affect [Chl] estimation. In leaves with the same [Chl] and different thickness/density, [Chl] 
retrieved from Equation 5.4 is smaller in thicker leaf than that in a thinner leaf. NIR reflectance 
of thicker leaves is higher than in thinner leaves, and the use of ρNIR allows decreasing uncertainty 
caused by variation in leaf thickness (Figures 5.9c and 5.10c). Reciprocal reflectance ρ710

−1 alone 
was also a very accurate measure of [Chl] in the ANGERS data set with a wide [Chl] variability 
(Figure 5.10a). To increase accuracy, we applied Equation 5.4 with a red edge band at 710 nm and 
NIR at 770–800 nm, estimating [Chl] in this data set (Figure 5.10b). The accuracy was very high 
(R2 = 0.94), confirming the robustness of the approach. CIred edge taking into account different leaf 
thickness/density was the most accurate (Figure 5.10c).

Different techniques for foliar [Chl] estimation, neural network (NN), partial least-squares 
regression, and vegetation indices (VIs), for three unrelated plant species (maple, chestnut, and beech) 
were tested in [32]. Descriptive statistics of the relationships between pigment content estimated by 
all three techniques are presented in Table 5.1. All three techniques were found to estimate [Chl] 
accurately (Figure 5.11). Among the VIs tested, CIred edge was the most accurate. Compared to NN 
and PLS, CIred edge was also superior, with almost zero bias and a coefficient of variation (CV) below 
12.1%. NN and PLS were very accurate, with CV below 11.8% for NN, with 8.9% positive mean 
normalized bias (MNB), and CV below 12.5% for PLS, with 9% negative MNB.

5.4.2 C arotenoids

Among other pigments, carotenoid estimation is probably the most challenging due to a strong 
overlap of Car absorption with those of Chl, AnC, and Flv, as well as the vast chemical (and hence 
spectral) diversity of Car, which is also easily changed by environmental stimuli. Another obstacle 
is the quite close relationship between [Chl] and [Car], so these variables are far from independent 
[48]. Thus, the precise estimation of [Car] with nondestructive spectral measurements has so far not 
reached accuracies comparable to the results obtained for [Chl] estimation.

It was found that maximal sensitivity of reflectance to [Car] is in the so-called green edge around 
510–515 nm (Gitelson et al., 2002). However, reflectance in this range is greatly affected by Chl 

(a) (b)

FIGURE 5.8  Chlorophyll content in the Virginia creeper leaves plotted versus (a) absorbance at 710 nm, α710; 
(b) difference of absorbance at 710 nm and in the NIR at 790 nm, α710–α790.
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(a)

(b)

(c)

FIGURE 5.9  Chlorophyll content in the Virginia creeper leaves plotted versus (a) reciprocal reflectance at 
710 nm, ρ710

−1; (b) difference of reciprocal reflectances at 710 nm and in the NIR at 790 nm, ρ710
−1– ρ790

−1; 
(c) red edge chlorophyll index CIred edge = (ρ790/ρ710)−1.
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(a)

(b)

(c)

FIGURE 5.10  Chl content in the leaves of the ANGERS data set plotted versus (a) reciprocal reflectance 
at 710 nm, (b) ρ710

–1, difference ρ710
–1−ρ790

–1, and (c) red edge chlorophyll index CIred edge = (ρ790/ρ710)−1.((c): 
Adopted from A. Gitelson, A. Solovchenko, Geophysical Research Letters, 2017. [66])
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absorption. Thus, it was suggested to subtract the Chl effect from ρ510
−1 using reciprocal reflectance 

in the green and red edge that are quite accurate measures of [Chl]. Carotenoid reflectance indices 
were suggested in the forms:

	 CRIgreen ∝ (ρ510
−1−ρgreen

−1)	 (5.6)

	 CRIRE ∝ (ρ510
−1−ρRE

−1)	 (5.7)

To take into account likely differences in leaf thickness/density, CRI was modified and presented as:

	 mCRIgreen ∝ (ρ510
−1−ρgreen

−1) × ρNIR	 (5.8)

	 mCRIRE ∝ (ρ510
−1−ρRE

−1) × ρNIR	 (5.9)

However, [Car] was never estimated in AnC-containing leaves. As can be seen in Figure 5.5, 
ρ−1 response to Car and AnC in the range around 515 nm is almost even; thus. subtraction of this 
effect is necessary. Subtraction of α550 from α510 allowed quite accurate estimation of [Car] in AnC-
containing Virginia creeper leaves (Figure 5.12a).

Kira, Linker, and Gitelson [37] compared accuracy of estimating [Car] by neural network, 
partial least-squares regression, and VIs in maple, chestnut, and beech leaves. In Table 5.2, 
descriptive statistics of the relationships between Car content estimated by all three techniques 
are presented. Relationships between NN and PLS models, red edge carotenoid reflectance index  
(CRIred edge), and Car content were very close for each species. However, while CRIred edge vs. Car 
relationships for maple and chestnut had very similar slopes, the slope of the relationship for beech 
was much lower than for maple and chestnut; thus, the CRIred edge vs. Car relationship for all three 
species taken together was essentially not linear, with CV = 23%. For all three species taken 
together, NN vs. Car and PLS vs. Car relationships were much closer (with R2 above 0.91) than that 
between CRIred edge and Car (Figure 5.13).

Fassnacht, Stenzel, and Gitelson [49] addressed the issue of nonlinearity of CRI and mCRI vs. 
[Car] relationships (Figure 5.13a). Using the same data set as Kira, Linker, and Gitelson [37] they 
examined the potential of the angular vegetation index (AVI) [49–51] to estimate total foliar [Car] 
of maple, chestnut, and beech. Based on an iterative search of all possible band combinations, a 
best-candidate AVIcar was identified. The identified index used reflectances at wavelengths 410, 530, 
and 550 nm and showed a quite close but essentially not linear relation with Car contents of the 

TABLE 5.1
Descriptive Statistics of the Relationships between 
Leaf Chlorophyll Content Measured and Estimated by 
Three Models, NN, PLS, and CIred edge

CV R2 MNB NMB

CIred edge 12.1 0.97 −0.8 −0.1

NN 11.8 0.97 8.9 −0.3

PLS 12.5 0.97 −6.2 0.6

Source:	 Modified from O. Kira et  al. International Journal of Applied 
Earth Observation and Geoinformation, 38: 2015, 251–260. [37]

Note:	 CV = coefficient of variation, MNB = mean normalized bias,  
NMB = normalized mean bias; all three measures are in percent.
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FIGURE 5.11  Chlorophyll content estimated by (a) red edge chlorophyll index, CIred edge; (b) NN; and (c) PLS 
plotted versus measured chlorophyll content in maple, chestnut, and beech. (Modified from O. Kira et al. 
International Journal of Applied Earth Observation and Geoinformation, 38: 2015, 251–260. [37])
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examined species with increasing sensitivity to high [Car] and a lack of sensitivity to low [Car] for 
which both mCRIRE (Equation 5.9) and ρ760/ρ500 [30] performed better. To make use of the advantages 
of both VI types, a simple merging procedure, which combined AVIcar with two earlier proposed 
carotenoid indices (mCRIRE and ρ760/ρ500), was developed. The merged indices had a close linear 
relationship with total Car content and outperformed all other examined indices. The merged indices 

(a)

(b)

(c)

FIGURE 5.12  Carotenoid content in the Virginia creeper leaves plotted versus (a) difference of absorbance 
α510−α550; (b) difference of reciprocal reflectances at 510 and 550 nm, ρ510

−1– ρ550
−1; and (c) green carotenoid 

reflectance index CRIgreen = (ρ510
−1−ρ550

−1) × ρ770–800.
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were able to accurately estimate total [Car] with a normalized root mean square error (NRMSE) 
of 8.12% and a coefficient of determination of 0.88 (Figure 5.14). The findings were confirmed by 
simulations using the radiative transfer model PROSPECT-5. This strengthens the assumption that 
the proposed merged indices have a general ability to accurately estimate foliar [Car]. To prove the 
general applicability of the index for nondestructive estimation of Car from leaf reflectance data, 
further examination of the proposed merged indices for other plant species is desirable.

5.4.3 A nthocyanins

In the Virginia creeper data set containing mainly red and dark red leaves, large differences in 
Rα(AnC) and Rρ−1(AnC) responses in the range 520–550 nm were found (Figure 5.6b). This shows 
that the highest accuracy of [AnC] estimation may be achieved using absorbance at 550 nm, shown 
in Figure 5.15a. Reciprocal reflectance around 570 nm, where Rα(AnC) = Rρ−1(AnC), was also an 
accurate proxy of [AnC] (Figure 5.15c). However, Chl significantly affected α and ρ−1 in the range 
550–570 nm. Thus, subtraction of this effect should be done using α and ρ−1 in the red edge range 
where they accurately represent [Chl]. The following models were capable of accurate estimation of 
[AnC] using absorbance and reflectance of leaves with widely variable pigment composition (Figure 
5.15b and d):

	 [AnC] ∝ α550−αRE	 (5.10)

	 [AnC] ∝ ρ−1
570−ρ−1

RE	 (5.11)

5.4.4 F lavonoids

In the blue range, 400–500 nm, where optical properties are affected by all three pigments, Chl, 
Car, and Flv, ρ−1 was either almost flat (Figure 5.3b) or even decreased with α increase (Figure 
5.2b). Rα and Rρ−1 bring unique quantitative information on the responses of α and ρ−1 to [Chl] and 
[Flv], which is specific for each pigment. As can be seen from Figure 5.7b, the responses Rρ−1(Chl) 
and Rρ−1(Flv) were equal, showing that reflectance spectroscopy is unable to differentiate between 
these pigments. By contrast, in the range between 400 and 430 nm, the response Rα(Flv) was 
higher than Rα(Chl), suggesting that for the data used, it is the only spectral band where [Flv] 
may be estimated using absorbance spectroscopy (Figure 5.7a). Another important finding is that 
Chl’s effect in the range 400–430 nm is still significant (Figure 5.7b), and its subtraction would 

TABLE 5.2
Descriptive Statistics of the Relationships between 
Leaf Carotenoid Content Measured and Estimated by 
Three Models, NN, PLS, and CRIred edge

CV R2 MNB NMB

CRIred edge 24.8 0.70 4.7 0.9

NN 15.6 0.88 1.7 1.4

PLS 16.7 0.86 −4.5 17.7

Source:	 Modified from O. Kira et  al. International Journal of Applied 
Earth Observation and Geoinformation, 38: 2015, 251–260. [37]

Note:	 CV = coefficient of variation, MNB = mean normalized bias,  
NMB = normalized mean bias; all three measures are in percent.
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(a)

(b)

(c)

FIGURE 5.13  Carotenoid content estimated by (a) modified green carotenoid reflectance index, CRIgreen; 
(b) NN; and (c) PLS plotted versus measured carotenoids content in maple, chestnut, and beech. (Reprinted 
from O. Kira et  al. International Journal of Applied Earth Observation and Geoinformation, 38: 2015, 
251–260. [37])
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(a) (b)

(c) (d)

FIGURE 5.15  Anthocyanin content in 24 Virginia creeper leaves plotted versus (a) absorbance at 550 nm, 
α550; (b) difference of absorbance at 550 and 710 nm, α550−α710; (c) reciprocal reflectance at 570 nm, ρ570

–1; 
and (d) difference ρ570

–1−ρ710
–1.

FIGURE 5.14  Merged AVIcar and mCRIred edge plotted vs. total carotenoid content in maple, chestnut, and 
beech. The solid line is the linear best-fit function of the relationship between the index and total carotenoid 
content for all three species taken together. (Modified from F.E. Fassnacht et al. Journal of Plant Physiology, 
176: 2015, 210–217 [49])
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be necessary for accurate [Flv] estimation. Absorbance at 420 nm was quite an accurate proxy 
of [Flv] (Figure 5.16a). Subtraction of α710 allowed a decreasing Chl effect at 420 nm, and the 
following model is suggested for accurate nondestructive estimation of [Flv] in a wide range of 
their variation (Figure 5.16b):

	 [Flv] ∝ α420−α710	 (5.12)

5.5  KNOWLEDGE-BASED SELECTION OF SPECTRAL BANDS

The uninformative variable elimination PLS (UVE PLS) technique is not a band selection per 
se in the sense that one tries to find the best small subset of variables for fitting a model, but the 
elimination of those variables that are useless [52]. Kira, Linker, and Gitelson [37] investigated the 
magnitude of the reliability parameter as an indicator of the information contained in the spectral 
bands and compared the most informative bands with the spectral bands used by the other models 
(NN, PLS, and VIs—CIred edge and CRIred edge). The results of UVE PLS for [Chl] and [Car] estimation 
are presented in Figure 5.17. The green spectral band around 560 nm retained in the NN and PLS 
models for Chl estimation (red areas in Figure 5.17a) coincided with highest values of the reliability 
parameter. In this spectral region, reflectance is governed by Chl hyperbolically decreasing with 
increase of [Chl] [53]. This spectral range was widely used for [Chl] estimation due to the high 
sensitivity of reflectance to Chl content in a wide range of its change in slightly green to dark green 
leaves [38,39,54–56].

Another maximum of the reliability parameter was found in the long wave end of the red edge 
region between 730 and 750 nm, where two factors govern reflectance. They include Chl absorption 
that is significant in leaves with Chl content above 400 mg m−2 (green to dark green leaves), and 
leaf structure and thickness affecting reflectance in the NIR range [43,55,57]. In previous studies, 
this band was used for accurately estimating foliar and total canopy Chl and nitrogen content using 
the red edge Chl index [23,29,58].

Despite the very low magnitude of the reliability parameter in the blue region (Figure 5.17a), the 
band around 480 nm was retained in the NN and PLS models for [Chl] estimation. In this region, 
absorption is saturated strongly and sensitivity of reflectance to [Chl] is minimal, as indicated by the 
magnitude of the reliability parameter. However, the blue range is suitable for reference reflectance in 
VIs for eliminating partially random variability of reflectance due to uncertainties of measurements 
as well as differences in leaf surface structure [59].

(a) (b)

FIGURE 5.16  Flavonoid content in Virginia creeper leaves plotted versus (a) absorbance at 420 nm, α420; 
(b) difference of absorbance at 420 and 710 nm, α420−α710. ((b): Modified from A. Gitelson et al. Journal of 
Plant Physiology, 218: 2017, 258–264. [35])
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The reliability parameter for Chl estimation indeed provided a reliable indication of the usefulness 
of the spectral region: its maxima coincided with the positions of spectral bands used by the green 
and red edge Chl indices [29,34]. The other bands used in these indices (beyond 770 nm and either 
540–560 nm in CIgreen or 690–730 nm in CIred edge) also correspond to regions in which the magnitude 
of the reliability parameter is substantial.

All four spectral bands retained in the NN and PLS models for [Car] estimation coincided with 
highest values of the reliability parameter (Figure 5.17b), as well as with spectral bands of the red 
edge CRI and green CRI [60]. The first band retained in the models was located around 510 nm, 

(a)

(b)

FIGURE 5.17  Reliability parameter calculated using uninformative variable elimination PLS (UVE PLS) 
plotted versus wavelength for (a) chlorophyll content and (b) carotenoid content estimation. The grey areas 
at the top correspond to positions of Sentinel-2 bands, which were found optimal for pigment estimation by 
NN and PLS models (Table 5.3). The red areas indicate the 20-nm-wide spectral bands that were found to be 
optimal for pigment content estimation by NN and PLS. Data containing maple, chestnut, and beech leaves 
(e.g., [32,38]) were used.
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where maximal sensitivity of reflectance to [Car] was found [60]. In this region, both Chl and Car 
contents govern reflectance, and this band was used in both CRIgreen and CRIred edge [34,60].

The second band retained in the models was located in the green range, where the magnitude of 
the reliability parameter is maximal. This band was used in CRIgreen for subtraction of Chl’s effect 
from reflectance around 510 nm [33]. The third and fourth spectral bands retained in the NN and 
PLS models were located around 630 and 740 nm. Both bands are located quite far from the main 
absorption bands of Chl and Car; at moderate to high Chl content, absorption around 630 and 
740 nm is not saturated and thus reflectance in these regions is sensitive to [Chl]. The band centered 
at 630 nm has an additional advantage—absorption by both Chl a and Chl b at 630 nm are almost 
the same. Thus, in contrast to the 740-nm band where only Chl a absorbs, the 630-nm band accounts 
not only for Chl a but also for Chl b absorption. To the best of our knowledge, the 630-nm band has 
never been used in any estimation of either Chl or Car contents.

Importantly, the location of the spectral bands retained in the models did not correspond to the main 
absorption bands of pigments of interest Chl and Car, and this is not surprising. They coincided with the 
location of spectral bands where absorption by Chl remained strong enough to be sensitive to Chl content 
but far enough from the main Chl absorption bands to avoid saturation. Remarkably, for Car estimation, 
the NN and PLS models retained bands centered at 490–510 nm and 470–490 nm, respectively, which 
are the spectral regions where reflectance was found to be maximally sensitive to Car absorption while 
also being affected by Chl absorption [30,32,60]. This region is also close to the range where reflectance 
is sensitive to the xanthophyll cycle and used in the photochemical reflectance index [31].

The repeatability of the wavelength selection for the NN and PLS models is remarkable; they 
almost completely coincided (Figure 5.17). It is also worth noting that consistent results of Chl and 
Car estimation by NN and PLS were achieved using reflectance without any spectral transformation, 
for example, log(1/ρ), first derivative, second derivative [61]. The band selection was not dependent 
on the data used, and the bands retained in the NN and PLS models agreed well with those reported 
in other studies and known to explain the chemical variation in our data sets.

The expected accuracy of pigment content estimation by VIs, NN, and PLS with spectral bands of 
the multispectral instrument (MSI) on the Sentinel-2 satellite was assessed in [32] and is presented in 
Table 5.3. CIred edge with spectral bands centered at 705 and 775 nm (Table 5.4) was able to estimate 

TABLE 5.3
Coefficient of Variation (in Percent) of Chlorophyll and Carotenoid Estimation by Neural 
Network (NN) and Partial Least-Squares (PLS) Regression with Simulated Expected 
Spectral Response of the Multispectral Instrument (MSI) aboard the Sentinel-2 Satellite

Bands

CV

Bands

CV

NN PLS NN PLS

Chlorophyll B1-B7 13.6 16.0 Carotenoids B1-B7 19.9 21.0

B4-B7 13.6 13.6 B4-B7 21.1 21.1

B5-B7 13.6 13.6 B5-B7 21.0 21.0

B6-B7 14.1 14.1 B6-B7 20.9 20.9

B5-B6 26.9 26.8 B5-B6 27.9 28.0

B4-B6 20.9 20.9 B4-B6 25.9 25.9

B2, B4, B6-B7 13.7 13.7 B2, B5, B6-B7 20.5 20.4

B3, B6, B7 13.6 13.6 B2, B4, B6-B7 19.6 19.6

B3, B5, B7 21.5 21.4

Source:	 Reprinted from O. Kira et al. International Journal of Applied Earth Observation and Geoinformation, 38: 2015, 
251–260. [37]

Note:	 The spectral bands of MSI are given in Table 5.4.
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[Chl] with CV = 13.1%, and using spectral bands at 740 and 775 nm CV was even lower − 12.6%. 
The minimal error of [Chl] estimation by both the NN and PLS models was higher than that of 
CIred edge and was achieved using all seven spectral bands (CV = 13.53%); using only three bands, 
540–580, 732.5–747.5, and 770–780 nm, allowed for accurate estimation of Chl with CV = 13.63%.

CRIred edge employing bands centered at 490, 705, and 783 nm was able to estimate Car content 
with CV below 27%. CV was a little bit higher (28.5%) when the band at 705 nm was replaced by 
the band at 740 nm. Car estimation by NN and PLS was more accurate than that by CRIred edge (Table 
5.3). The highest accuracy (CV = 19.6%) was achieved using four spectral bands (B2, B4, B6, B7) 
in the blue, red, red edge, and NIR ranges of the spectrum. The CV of [Car] estimation using MSI 
bands was about 3%–4% higher than that using 20-nm-wide optimal bands. This is likely due to the 
use of the band B2 positioned in the green edge region between 460 and 525 nm. The width of this 
band does not correspond to the required 10–15-nm width of the band positioned at 510 nm, where 
maximal sensitivity of reflectance to [Car] content was found [30,34,60].

While green and red edge CI were tested at close range at the canopy level [62] as well as using 
TM Landsat data [63], the Car and AnC models were not tested at the canopy level. It is also 
necessary to examine the presented techniques at other scales. For now, it remains unclear whether 
the found linear relationships between the models and pigment content also hold on a coarser spatial 
scale. It has to be examined if the proposed techniques are able to estimate Car content at the canopy 
scale using airborne and satellite data, which is typically influenced by atmosphere, bidirectional 
reflectance distribution function effects, canopy shadows, and soil background.

5.6  CONCLUDING REMARKS

The progress in the technology achieved over the last decade enabled precise and quick assessment of 
key plant pigments, including Chl, Car, and AnC in situ. Successful application of this approach, based 
mostly on reflectance spectroscopy, depends on the correct selection of informative spectral bands, 
which might not be trivial, especially in the case of pigments with strongly overlapping absorption 
bands. Furthermore, the comparison of the relationships between absorbance and reflectance vs. 
pigment content in leaves using large data sets collected across plant species, developmental stages, 
and physiological states obviated certain limitations of reflectance-based quantification of the foliar 
pigments, especially in the blue and red, manifesting itself as a failure of linear correlation between 
reciprocal reflectance and absorbance. In terms of Kubelka-Munk theory describing the behavior 
of relatively weak absorbers evenly distributed in a thick layer of a highly reflective substance 

TABLE 5.4
Specifications of the Seven Spectral Bands (B1–B7) of the Multispectral 
Instrument (MSI) aboard the Sentinel-2 Satellite

Spectral Band
Center Wavelength

(nm)
Band Width

(nm)
Spatial Resolution

(m)

B1 443 20 60

B2 490 65 10

B3 560 35 10

B4 665 30 10

B5 705 15 20

B6 740 15 20

B7 783 20 20

Source: Reprinted from O. Kira et  al. International Journal of Applied Earth Observation and 
Geoinformation, 38: 2015, 251–260. [37]
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[27], these limitations stem from (i) large extinction coefficients of Chl and other pigments [42], 
(ii) their high content in and (iii) structural complexity of the leaf and its photosynthetic apparatus 
[43]. Another plausible reason is backscattering from the superficial structures of plants such as 
leaf cuticle [44] contributing to the total leaf reflectance, especially in the blue, but bearing little 
or no information about the photosynthetic pigment composition of the leaf, hence decreasing the 
“information payload” of the total reflected signal.

In view of these difficulties, the reflectance-based approach is feasible only in certain spectral 
ranges positioned outside the main absorption bands of the pigments, mainly in the long-wave part 
of the visible range, red edge, and NIR [33,34]. To support the informed selection of suitable spectral 
bands for application of reflectance-based techniques, we proposed criteria, the traits Rα and Rρ−1, 
as quantitative measures of the α and ρ−1 responses to content of the pigment of interest. Importantly, 
spectral responses Rα and Rρ−1 complement specific optical properties, revealing the quantitative 
effect of each pigment on the background of other pigment absorption on α and ρ−1.

The spectral bands selected based on these criteria are in line with the results of previous studies 
[19,34,45,46]. The task of spectral band selection can be further simplified by the elimination of 
useless spectral channels as outlined above, and the reduced set of spectral bands can be employed 
in different (NN-, PLS-, and VI-based) models for pigment content estimation. All three models 
were found to provide accurate estimations of foliar Chl content across three tree species. The 
Chl index using only two spectral bands in the red edge and NIR may be recommended for Chl 
estimation. NN and PLS with four spectral bands were the best for estimating carotenoid content; 
the NN model showed the highest accuracy. No techniques tested were species specific, allowing for 
estimating pigment content in different species without reparameterization of the model. All three 

(a) (b)

FIGURE 5.18  Absorbance and reflectance spectra of four Virginia creeper leaves with variable Chl, Car, 
AnC, and Flv contents (Table 5.5). Shaded areas represent spectral ranges found to be optimal for estimating 
pigment contents: [Chl]—green, model presented in the Equation 5.5; [AnC]—red, model presented in the 
Equation 5.11; [Car]—yellow, model presented in the Equation 5.8; and [Flv]—blue, model presented in the 
Equation 5.12. In models presented in the Equations 5.5 and 5.8, the 770–800 nm NIR range has been used.

TABLE 5.5
Pigment Content (in µg/cm2) in Four Leaves Presented in Figure 5.18

Leaf Chl Car AnC Flv*10−1

1 38 9.7 0.14 27.1

2 18.5 5.3 14 30.2

3 13 6.3 46 24.7

4 0.4 0.7 40 10.4
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techniques performed consistently well and yielded accurate estimations of pigment content when 
spectral bands were simulated in accord with the spectral response of the multispectral instrument 
on the Sentinel-2 satellite.

As a more generic approach capable of overcoming the limitations of reflectance-based models, 
we introduced the concept of specific absorbance response, objectively showing the contribution 
of each pigment group to light absorption, and deduced the in situ absorbance of foliar Chl, Car, 
AnC, and Flv, obviously free from the limitations typical of reflectance-based approaches. The 
absorbance-based algorithms demonstrated increased dynamic range and linear relationships with 
the leaf pigment content, especially pronounced in the shortwave part of the visible spectrum.

Based on the comparative account of advantages and drawbacks of reflectance- and absorbance-
based pigment estimation, we argue that these approaches complement each other and can be used 
synergistically in advanced models for precision estimation of foliar pigments. We believe that the 
“response traits” are very instructive for understanding the combined effect of pigments on optical 
properties, which is at the foundation of knowledge-driven selection of spectral bands for creating 
new and improving existing models for noninvasive remote estimation of pigments.

The recently developed PROSPECT-D model includes, for the first time, the three main leaf 
pigments as independent constituents: Chl, Car, and AnC [43]. PROSPECT-D was tested on several 
data sets displaying many plant species with a large range of leaf traits and pigment composition, 
and showed very accurate estimation of Chl, Car, and AnC using hyperspectral transmittance and 
reflectance data. The accuracy of Chl estimation by the red edge Chl index (CIred edge) was slightly 
better than that of Prospect D (4.5% vs. 5.5%), while the accuracy of AnC estimation by ARI (6.1%) 
and mARI (6.4%) was significantly better than that of Prospect D (9.5%). Significantly, Prospect 
D probably provides the only way to accurately estimate Car content in AnC-containing leaves 
[13]. Thus, the application of both data-driven and radiative transfer modeling are alternatives for 
developing generic algorithms estimating the content of all pigment groups. The combination of the 
two approaches brought desirable alternatives to extensive data collection (mandatory for the former) 
and high computational resources required by the latter [64,65].

Combining the approaches presented in this chapter, one can dramatically improve noninvasive 
estimation of the pigments absorbed in blue (flavonoids) and blue-green (carotenoids) on the 
background of strong overlapping absorption of other pigments. It is essential not only for those 
involved in remote estimation of pigments per se, but for plant biologists as well. Thus, our findings 
provide for a better understanding of light interaction with leaves, which translates into a deeper 
insight into the in-situ light absorption properties of all key plant pigment groups. This approach will 
constitute a handy tool for plant physiologists and photobiologists for dissecting the environmental 
stress effects in plants, especially for comparative analysis of interception of light by photosynthetic 
and photoprotective pigments as a function of physiological condition and developmental stage.
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