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Remote Estimation of Crop 
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Properties at Various Scales

Anatoly A. Gitelson

1.1  INTRODUCTION

Remote sensing has provided valuable insights into agronomic management over the past few decades. 
Use of remote sensing for determining crop physiological and phenological status has its roots in the 
pioneering work by William Allen, Harold Gausman, and Joseph Woolley [1–3], who provided much 
of the basic theory relating morphological characteristics of crop plants to their optical properties. 
These pioneering works have led to the understanding of how leaf reflectance changes in response 
to leaf thickness, species, canopy architecture, leaf age, nutrient and water status. Leaf chlorophyll 
content and its absorption in the visible spectrum provide the basis for utilizing reflectance as a tool 
either with broad-band radiometers or hyperspectral sensors that measure reflectance at narrow 
bands. The basic understanding of leaf reflectance has led to the development of various vegetation 
indices that have been extended to crop canopies and have been used to quantify various agronomic 
parameters (e.g., leaf area, crop cover, biomass, crop type, nutrient status, and yield). These tools 
are still being developed as we learn more about how to use the information contained in reflectance 
measurements from a range of different sensors.

A summary of the progress in applying remote sensing to agriculture has been published in a 
collection of articles in Photogrammetric Engineering and Remote Sensing [4–8]. Other recent 
reviews of the application of remote sensing methods to crops were developed by Hatfield et al. [9,10]. 
These articles provide a summary of the multispectral and hyperspectral remote sensing efforts in 
more detail and the reader is referred to these articles for a more thorough understanding.

Since first edition of this book was published [11], researchers at Center for Advanced Land 
Management and Information Technologies (CALMIT) at the University of Nebraska-Lincoln 
(UNL) have further developed and evaluated remote sensing techniques and tested them at close 
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range and satellite levels. This chapter contains a summary of the experiences and advances made 
at UNL since 2010.

1.2  VEGETATION FRACTION

One of the principal variables in the growth of crops is the fraction of the solar radiation intercepted 
by foliage. The productivity of crops may be analyzed as the product of the solar energy intercepted 
over a season and the efficiency with which that energy is converted to biomass. In many crops, the 
relationship between radiation interception and green foliage cover/fractional vegetation cover is 
sufficiently close for the latter to be used as a substitute for more elaborate measurements of light 
interception [11]. Thus, vegetation fraction (VF) is an important trait that helps determine crop 
productivity.

Different vegetation indices (VIs) for the remote estimation of VF at close range in two crop types, 
maize and soybean, with contrasting canopy architectures and leaf structures were evaluated [12]. 
To determine the accuracy of VF estimation, the noise equivalent (NE) of VF was used:

	 NE VF RMSE VI vs. VF / VI / VF( ) [ ( ) ( )]∆ = d d

where RMSE (VI vs. VF) and d(VI)/d(VF) are the root mean square error and the first derivative of 
the VI vs. VF relationship, respectively. The NE ΔVF provides a measure of how well the VI responds 
to VF across its entire range of its variation. NE ΔVF not only takes into account the RMSE of the VF 
estimation but also accounts for the sensitivity of the VI to VF, thus, providing a metric accounting 
for both scattering of the points from the best fit function and the slope of the best fit function.

Among the indices tested [12], the enhanced vegetation indices EVI, EVI2, wide dynamic range 
vegetation index (WDRVI), normalized difference vegetation index NDVIgreen, and NDVIred edge 
were found to be the most accurate in estimating vegetation fraction (Figure 1.1). The algorithm for 
estimating VF by WDRVI = (αρNIR − ρred)/(αρNIR +  ρred) with α = 0.3 was

	 VF 80.84 WDRVI 0.3= +=* α 34

It was generic, not requiring parameterization for two crops studied with RMSE below 6% and 
mean normalized bias (MNB) below 2% (Figure 1.2). It was followed by red edge NDVI for both 
crops. EVI2 was accurate for soybeans (NE = 7.8%) and less accurate for maize (NE = 8.9%). 
Both VARIgreen and VARIred edge, which were superior in estimating VF in wheat [11], were also quite 
accurate estimating VF in maize and soybeans; however, they were not the best among VF tested.

1.3  FRACTION OF ABSORBED PHOTOSYNTHETICALLY ACTIVE RADIATION

The fraction of absorbed photosynthetically active radiation (fAPAR) is one of the main traits used 
in production efficiency models (PEMs). It also plays tremendous role in accurate retrieval of light 
use efficiency, which is essential for assessing vegetation health. NDVI is the most-used VI for 
estimating fAPAR. In [13] relationships were established between fraction of PAR absorbed by 
photosynthetically active vegetation (fAPARgreen), and NDVI for two crops with contrasting leaf 
structures, photosynthetic pathways (C3 vs. C4), and canopy architectures, using in situ radiometric 
data and daily MODIS data over irrigated and rain-fed maize and soybean sites during eight years. 
Through the use of high temporal resolution in situ and MOSIS data, it was possible to identify 
specific phases in the growing season that aid in the interpretation of observations collected with 
coarser temporal resolution (or even single scenes). MODIS data are adequate for resolving distinct 
phases in the fAPARgreen/NDVI relationships within the growing season. The identification of these 
different phases has important implications for the interpretation of remotely sensed observations 
of crops, such as the estimation of light use efficiency (LUE) and productivity.
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Significantly, in [13] was shown that established relationships of fAPARgreen vs. in situ NDVI 
were very close to that of fAPARgreen vs. MODIS-retrieved NDVI. In vegetative stages, when 
fAPARgreen was below 0.65, the fAPARgreen/NDVI relationships for crops with contrasting leaf 
structures and canopy architecture were close and almost linear, allowing accurate estimation 
of fAPARgreen with RMSE = 5.8% (Figure 1.3). However, fAPARgreen/NDVI relationships 
in reproductive stages were very different for both crops (Figure 1.4), showing that canopy 
architecture and leaf structure greatly affect the relationship as leaf chlorophyll (Chl) content 
changes and vertical distribution of Chl content and green leaf area index (LAI) inside the canopy 
becomes heterogeneous.

The study [13] revealed fine details of the fAPARgreen/NDVI relationships, specifically two types 
of hysteresis that prevent accurate fAPARgreen estimation using NDVI during the whole growing 
season. SAIL (Scattering by Arbitrary Inclined Leaves) model simulations of the fAPARgreen/NDVI 
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FIGURE 1.1  Noise equivalent of vegetation fraction estimation by vegetation indices tested for (a) maize, 
five years, nine irrigated and rain-fed sites; and (b) soybeans, three years, six irrigated and rain-fed sites.
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relationship for maize clearly displayed the existence of hysteresis in the relationship as revealed by 
empirical data.

It was also found that the fAPARgreen/NDVI relationships, established for vegetative stages in 
maize and soybean, are very different from other empirical studies at close range and satellite 
levels as well as from radiative transfer simulations [13]. This shows need for extensive research in 
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FIGURE 1.2  Vegetation fraction VF predicted by WDRVI with α = 0.3 plotted versus vegetation fraction 
measured in irrigated and rain-fed maize and soybeans sites.
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FIGURE 1.3  The MODIS-retrieved fAPARgreen/NDVI relationships for maize (collected in 2001 through 
2008 in irrigated and rain-fed sites) and soybean (collected in 2002, 2004, 2006, and 2008 over two irrigated 
and rain-fed sites each year) in vegetative stage only (700 observations). Solid line is best-fit function.
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remote sensing techniques for fAPARgreen estimation. The issues of canopy vertical heterogeneity 
(in terms of leaf Chl content, leaf area, and leaf angle distribution), studied in [13], also affect other 
remote sensing problems such as estimating leaf and canopy Chl content, light use efficiency, and 
productivity. However, there has been little work addressing the issue of  the effects of vertical 
variability in canopy structure and the paper [13] shows the importance of this.

In order to develop generic algorithms for fAPARgreen estimation, VIs previously used for fAPAR 
estimation were tested. The reflectance spectra collected at close range [11] were resampled to spectral 
bands of the Moderate Resolution Imaging Spectroradiometer (MODIS) (green 545–565 nm, red 
620–670 nm, and NIR 841–876 nm) using MODIS spectral response function and SR (simple ratio), 
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FIGURE 1.4  MODIS-retrieved NDVI vs. fAPARgreen relationships for (a) maize in 2001 through 2008 
(16 site years) and (b) soybean in 2002, 2004, 2006, and 2008 (8 site years).
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NDVI, EVI2, TVI, MTVI1, MTVI2, VARIgreen, OSAVI, WDRVI with α = 0.5, and Green NDVI 
were calculated. The reflectance spectra were also resampled to spectral bands of the Multi Spectral 
Instrument (MSI) on the Sentinel-2 satellite system (green: 550–580 nm, red: 660–670 nm, red 
edge 1: 693–712 nm, red edge 2: 732–748 nm and NIR: 773–793 nm) using MSI spectral response 
function and MTCI, VARIerd edge, red edge NDVI were calculated.

The relationship between NDVI and fAPARgreen was almost non-species-specific (Figure 1.5). 
Thus, NDVI is supposed to be a proxy of fAPARgreen. However, the NDVI/fAPARgreen relationship is 
asymptotic, with a decrease in the slope as fAPARgreen exceeds 0.7 (first derivative dNDVI/dfAPARgreen 
in Figure 1.5). Thus, NDVI exhibits limitations at moderate-to-high vegetation density. As 
fAPARgreen > 0.7, RMSE of fAPARgreen estimation by NDVI grows exponentially, reaching 0.25 for 
fAPARgreen = 0.8. This means that in crop studied for more than two months during the growing 
season NDVI does not yield reliable information about fAPARgreen [11].

EVI and EVI2 were closely related to fAPARgreen < 0.7, but further increase of EVI from 0.6 to 
0.9 did not relate to fAPARgreen (Figure 1.6). For the crops studied, the slope of fAPARgreen/LAI and 
fAPARgreen/[Chl] relationships increased gradually until LAI reached 3–4 and then it dropped due 
to decrease in depth of light penetration inside the canopy and decrease of Chl efficiency in light 
absorption [14]. Thus, for LAI > 3, EVI2 did follow the increase in LAI while fAPARgreen increased 
a little, which disturbs the close fAPARgreen/EVI relationship.

Among VIs tested, only three had close linear non-species-specific relationships with fAPARgreen: 
WDRVI with α = 0.5, green NDVI, and red edge NDVI. All three VIs were developed to avoid 
NDVI’s limitation of estimating biophysical characteristics of dense vegetation. The main reasons 
for decreasing NDVI sensitivity to high-density vegetation are (i) a high ρNIR/ρred ratio that reaches 
7–10 for moderate-to-high density vegetation, and (ii) saturation of red reflectance. WDRVI is a 
modification of NDVI that attenuates the effect of near infrared (NIR) reflectance by α < 1. It 
makes the magnitudes of αρNIR and ρred comparable and increases the sensitivity of WDRVI to such 
traits of dense vegetation as vegetation fraction and LAI. The fAPARgreen/WDRVIα=0.5 relationship 
was not species specific, with R2 = 0.92 (p < 0.001) and RMSE = 0.069 (Figure 1.7, Table 1.1). 
Interestingly that close relationship between WDRVI and fAPARgreen for Soil-Canopy Observation 
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of Photosynthesis and Energy (SCOPE) simulations with LAI varying from 1 to 4, leaf chlorophyll 
content (20–80 µg/cm2), solar zenith angle 20–60°, and three typical leaf inclination distribution 
functions (planophile, plagiophile, and spherical) was recently found [15].

The use of green and red edge spectral bands instead of red in NDVI is another way to increase 
the sensitivity of NDVI-like vegetation indices to traits of high-density vegetation. The absorption 

y = -1.06x2 + 2.28x - 0.26
R² = 0.88

0

0.2

0.4

0.6

0.8

1

0.0 0.2 0.4 0.6 0.8 1.0

R
AP

Af
gr

ee
n

EVI

FIGURE 1.6  Relationship between fAPARgreen and EVI2 for maize and soybean.
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coefficient of Chl in the green and red edge spectral regions, located far from the main red absorption 
band of Chl (in situ around 670 nm), is not higher than 1%–2% of that in the red and the pathway of 
light inside a leaf and canopy is much larger than in the red. So, with increase in vegetation density, 
absorbance in these spectral regions continues to increase, enhancing sensitivity of the green and 
red edge reflectance to fAPARgreen.

The relationships of fAPARgreen vs. green NDVI and fAPARgreen vs. red edge NDVI were found to 
be very close (p < 0.001) with R2 = 0.92 and 0.95, respectively (Figure 1.7). Red edge NDVI appears 
to be the best index for fAPARgreen estimation in the whole range of its variation (Figure 1.8). The 
algorithms presented in Table 1.1 are not species specific for maize and soybean and do not require 
parameterization for these crops.

1.4  CHLOROPHYLL AND NITROGEN CONTENT

Canopy chlorophyll content (Chl) relates closely to plant photosynthetic capacity, nitrogen status, and 
productivity, and the necessity of remote Chl estimation in crops is recognized (e.g., [14,16]). Seasonal 
changes in the pigment pool and structural canopy properties greatly influence the light climate 

TABLE 1.1
Algorithms, Determination Coefficients (R2), and RMSE of 
fAPARgreen Estimation in Maize and Soybean by Vegetation Indices

VI fAPARgreen vs. VI R2 RMSE

EVI y = –1.06x2 + 2.28x – 0.26 0.88 0.096

NDVI y = 0.07exp(2.81x) 0.92 0.075

WDRVI, α = 0.5 y = 0.85x + 0.16 0.92 0.069

Green NDVI y = 1.6891x – 0.5271 0.92 0.067

Red edge NDVI y = 1.2531x – 0.1035 0.95 0.057

Note:	 The vegetation index names are given in full in the text. fAPAR, fraction of absorbed 
photosynthetically active radiation. RMSE, root mean square error.
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inside the canopy and modulate the extinction coefficient. For realistic modeling of reflectance, 
radiative transfer models should be fed by known vertical LAI and pigment content distributions as 
well as their changes during the season. It is important for monitoring crops with different structural 
properties when the spatial resolution of the sensor is low (e.g., comparable to field size or larger) 
and in regions with mixed-use cropping practices (e.g., maize/soybean rotation) requiring generic 
algorithms that do not need reparameterization for different crops.

Development of generic algorithms for Chl estimation that could be applied with no 
reparameterization for two contrasting crop species, maize and soybean, during the entire growing 
season was a goal of Peng et al. [16]. These two crops represent different biochemical mechanisms 
of photosynthesis, leaf structure, and canopy architecture. The relationships between canopy Chl and 
reflectance, collected at close range and resampled to bands of the Multi Spectral Instrument (MSI) 
aboard Sentinel-2, were analyzed in samples taken across the entire growing seasons in irrigated 
and rain-fed sites located in eastern Nebraska between 2001 and 2005.

Crop phenology was found to be a strong factor influencing canopy reflectance in two contrasting 
crops. Phenology caused a substantial species-specific difference (hysteresis) in the reflectance vs. 
canopy Chl relationships between the vegetative and reproductive stages. The reasons for the hysteresis 
were seasonal changes in canopy architecture, leaf structure, and foliar Chl, as well as seasonal changes 
in the influence of the soil/residue background. The effect of the hysteresis on vegetation indices applied 
for canopy Chl estimation depended on the bands selected in their formulation. For widely used VIs 
using NIR and red reflectance, NDVI, SR and EVI, there were significant differences in the VI vs. 
canopy Chl relationships between the vegetative and reproductive stages and between species, limiting 
their application for accurate canopy Chl estimation over the entire growing season. VIs with red 
edge and NIR bands, using reflectance simulated for the MSI sensor, included the chlorphyll index 
CI740 = (ρNIR/ρ740) – 1, MERIS terrestrial chlorophyll index MTCI = (ρNIR – ρ705)/(ρ705 – ρ670), and red 
edge NDVI740 = (ρNIR – ρ740)/(ρNIR – ρ740). These VIs were accurate in estimating canopy Chl in maize 
and soybean with RMSE values below 0.38 g m−2 (Figure 1.9, Table 1.2). Algorithms utilizing these VIs 
require neither parameterization for each crop nor for each phenological stage (Table 1.2).
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FIGURE 1.9  Noise equivalent of canopy Chl content estimation in maize and soybean combined by vegetation 
indices calculated using reflectance simulated at MSI spectral bands for chlorophyll index with red edge band 
at 705 nm (CI705), red edge NDVI with red edge band at 740 nm (NDVI740), MTCI, and chlorophyll index with 
red edge band at 740 nm (CI740). Data taken from 2001 through 2005 over three irrigated and rain-fed sites (11 
maize sites years and 4 soybeans sites year) with Chl content varied from 0 to 4.5 g m−2.
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Development of generic algorithms for canopy Chl estimation in rice, wheat, corn, soybean, sugar 
beet, and natural grass using red edge and NIR spectral bands was presented in Inoue et al. [17]. 
The ratio of reflectances at 815 and 704 nm (ρ815/ρ704) was found to be superior to all other models 
in overall predictive ability of canopy Chl content. The soundness of the model was supported by 
simulation analyses using a radiative transfer model under various canopy conditions including plant 
types (canopy geometry), leaf Chl content, LAI, and soil background. Importantly, the partial least 
squares regression (PLSR) and interval partial least squares regression (iPLSR) models using much 
larger number of wavebands proved to be inferior to the VI-based models, especially in versatility.

The authors of Ciganda et al. [18] addressed a very important question: how deep into the maize 
canopy is Chl content sensed by the red-edge chlorophyll index, CIred edge? Statistical techniques, a 
hierarchical regression, and three Aikaike Information Criterion, were used to determine how many 
leaf layers are sensed by the CIred edge. The hierarchical regression procedure made it possible to 
assess the importance of each leaf Chl content in defining total Chl content in a maize canopy and 
documented very close relationships between CIred edge and total canopy Chl content when 8 to 10 
top leaf layers were included in the model. Such deep sensing inside the maize canopy is the reason 
for the high accuracy in estimating maize canopy Chl content by CIred edge, which employed the NIR 
and the red-edge (720–730 nm) spectral bands.

A strong correlation between foliar nitrogen (N) and Chl contents has been found for various 
plant species [19–21]. Since Chl is the main plant constituent determining the reflectance in the 
visible region of the spectrum, optical remote sensing techniques have great potential in providing 
information on canopy Chl and N content. Baret et al. [19] suggested that canopy Chl content is well 
suited for quantifying canopy level N content. Canopy Chl content is a physically sound quantity 
that represents the optical path in the canopy where absorption by Chl dominates the radiometric 
signal. Thus, absorption by Chl provides the necessary link between remote sensing observations 
and canopy-state variables that are used as indicators of N status and photosynthetic capacity.

PROSAIL (PROSPECT and Scattering by Arbitrary Inclined Leaves) simulations showed that 
the CIred edge is linearly related to the canopy Chl content over the full range of potential Chl values 
[22]. In that paper, the best results in estimating either canopy Chl or N content were obtained using 
CIred edge and CIgreen. It was also shown that the precise position of the spectral bands in the CIred edge is 
not very critical. In [23], this was further elaborated by studying the spectral bands to be used in the 
CIred edge in order to get the minimum RMSE in estimating canopy Chl and N content for three crop 
species (potato, maize, and soybean) and grass. Although results varied for the various experiments, 
optimal results were obtained using a spectral band around 800 nm in the numerator of the CIred edge 
and a spectral band in the range 705–740 nm in the denominator. The choice of the denominator 
waveband was more critical than the choice of the numerator: for maize and grass (erectophile 
canopies) this was in a wide range of 720–740 nm, whereas for soybean and potato (planophile 

TABLE 1.2
Algorithms for Canopy Chlorophyll Content Estimation, 
Generic for Maize and Soybean, Determination Coefficients 
(R2), and RMSE in g m−2 for Three Vegetation Indices

Canopy Chl in g m−2 R2 RMSE

Chl = 0.241 × MTCI – 0.618 0.90 0.38

Chl = 18.509 × (red edge NDVI740) – 0.999 0.91 0.37

Chl = 6.645 × CI740 – 0.649 0.91 0.36

Note:	 The vegetation index names are given in full in the text. Chl, chlorophyl 
content. RMSE, root mean square error.
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canopies) this band was around 705–710 nm. Subsequently, the Sentinel-2 spectral bands have been 
simulated using the data of the four experiments. In all experiments, the best results in estimating 
canopy Chl and N content were obtained using the CIred edge, CIgreen, and MTCI. Moreover, results 
using the Sentinel-2 band positions were quite similar to the optimal band positions for the CIred edge. 
This confirms the importance of the red edge bands on Sentinel-2. However, CIgreen with green band 
presented in MODIS and Landsat also seems very promising and requires further research.

In Schlemmer et al. [24] was shown that Chl and N content in maize can be estimated by the 
same remote sensing techniques, confirming a paradigm that absorption by Chl provides the 
necessary link between remote sensing observations and canopy-state variables that are used as 
indicators of N status. The study [24] presented the significance of the green (560 nm) and long-
wave red edge (740 nm) bands of the MSI sensor on Sentinel-2 for estimating Chl and N contents 
in maize (Figure 1.10). Also notable, CIred edge with quite a wide spectral band around 740 nm was 
optimal for N and Chl estimation. CIred edge with red edge band 720–730 nm allowed accurate 
non-species-specific estimation of gross primary production in maize and soybean [11,16] and the 
same range was found to be optimal for N estimation in rice [25]. Thus, it is likely that presented 
techniques for N and Chl estimation in maize could accurately estimate the same characteristics 
in other crops.

Despite encouraging results, thoughtful studies of reflectance vs. canopy Chl relationships are 
still required for different types of crops with contrasting biochemical and structural properties. 
The robustness of generic algorithms for different crops and their varieties should be confirmed in 
further studies. These algorithms should also be examined for their sensitivity to a range of typical 
soil backgrounds.

1.5  GREEN LEAF AREA INDEX

One of the key traits affecting primary production is the green leaf area index (green LAI), which 
is the ratio of the one-sided green leaf area to the ground area underneath. NDVI is widely used for 
estimating green LAI (see for review [10,26]). However, the relationship between NDVI and green 
LAI is essentially nonlinear and exhibits significant variations among various vegetation types. 
When green LAI > 2, NDVI is generally insensitive to green LAI. Thus, the main requirements for 
remote sensing techniques estimating green LAI are (i) increase of sensitivity to moderate-to-high 
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vegetation density and (ii) decrease of their sensitivity to leaf structure and canopy architecture. 
Both issues are addressed below.

Remote sensing techniques for estimating green LAI in two crop types (maize and soybean) 
with contrasting canopy architectures and leaf structures were evaluated to develop algorithms not 
requiring reparameterization for each crop [26]. Among the VIs tested, the CIgreen, the CIred edge and 
the MTCI exhibited strong and significant linear relationships with green LAI ranging from 0 to 
more than 6 m2/m2. The CIred edge was the only index insensitive to crop type and produced the most 
accurate estimations of green LAI in both crops (RMSE < 0.58 m2/m2). These results were obtained 
using data acquired at close range (i.e., field spectrometers mounted 6 m above the canopy) and from 
an aircraft-mounted Airborne Imaging Spectrometer for Applications (AISA). As the CIred edge also 
exhibited low sensitivity to soil background effects, it constitutes a simple yet robust tool for the 
remote and synoptic estimation of green LAI.

In [27] the results of the development of generic algorithms for green LAI estimation in four 
different crops, maize, soybean, wheat, and potato, were presented. Spectral measurements and 
green LAI data of wheat and potato were obtained in Israel and of maize and soybean in the United 
States. Among the VIs examined, two variants of the chlorophyll index (CI) and WDRVI with 
the green and red edge bands were the most accurate in estimating green LAI in all four crops. 
Hyperspectral reflectance data were used to determine optimal diagnostic bands for estimating green 
LAI in four crops using a universal algorithm. The green (530–570 nm) and red edge (700–730 nm) 
regions were identified as having the lowest errors in estimating green LAI. Since the Landsat 8 
Operational Land Imager (OLI) has a green spectral band and the Sentinel-2, Sentinel-3, and VENµS 
have both green and red edge bands, it is expected that these VIs can be used to monitor green LAI 
in multiple crops using a single algorithm.

VIs that are maximally sensitive to green LAI along its entire range of variability were presented 
in [28]. In order to benefit from the different sensitivities of VIs along the entire green LAI range, 
combining of VIs was suggested. For sensors with spectral bands in the red and NIR regions, the 
best combination was NDVI and SR (maize normalized root mean square error (NRMSE) = 10%; 
soybean NRMSE = 11.5%). However, this combined index was species specific. For sensors with 
bands in the red edge and NIR regions, the best combination was red edge NDVI and CIred edge, not 
requiring reparameterization, and was capable of accurately estimating green LAI in both crops (i.e., 
maize and soybean) with a NRMSE below 10%.

Informative spectral bands for estimating green LAI in maize (a C4 species) and soybean (a C3 
species) retained in three types of methods—neural networks (NN), partial least squares (PLS) 
regression, and vegetation indices (VI)—were found in [29]. Hyperspectral reflectance and green 
LAI of irrigated and rain-fed maize and soybean were taken during eight years of observations 
(altogether 24 site-years) in very different weather conditions. The red edge and the NIR bands were 
selected by all methods and were found to be the most informative. The best results were obtained 
with NN using four spectral bands—two on red edge (700–710 and 720–740 nm), NIR (beyond 
770 nm), and red (around 670 nm)—with NRMSE < 7.7%. These were followed by CIred edge, using 
red edge and NIR bands, and PLS using three bands, both with NRMSE < 8.5%.

The validity of these bands was further confirmed via the uninformative variable elimination PLS 
technique, UVE PLS [30,31]. This technique assists in reducing the data dimension by eliminating 
spectral data that are uninformative or redundant and identifying the most informative spectral 
regions of the hyperspectral data. A smaller absolute value of the reliability parameter indicates that 
the data are less informative and can be removed at the user’s discretion. Centner et al. [31] cautioned 
that this approach is not for band selection, but it is a way to eliminate variables that are useless. The 
most informative spectral bands for green LAI estimation were found by UVE PLS in the NIR, red 
edge, and green spectral ranges (Figure 1.11).

Informative spectral bands for green LAI estimation in maize and soybean using spectral 
data taken at close range [29] were tested in [32–34] using Aqua and Terra MODIS, Landsat TM 
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and ETM+, ENVISAT MERIS surface reflectance products, and simulated data of the recently 
launched Sentinel-2 MSI and Sentinel 3 OLCI (Ocean and Land Colour Instrument). Special 
emphasis was placed on testing generic algorithms that not require reparameterization for these 
species. Four techniques were investigated in [32]: support vector machines (SVM), neural network 
(NN), multiple linear regression (MLR), and vegetation indices (VI). All models tested provided 
a robust and consistent selection of spectral bands related to green LAI in crops representing a 
wide range of biochemical and structural traits. For TM/ETM+ Landsat, when only two spectral 
bands were allowed, all four techniques selected green and NIR bands. Among the nonparametric 
regression techniques, NN and SVM were the best with NRMSE below 14.4%. Addition of a 
third band (in the blue region) decreased the NRMSE only slightly (to 14%). When four bands 
were used (the fourth band was in the red region), NRMSE increased, due likely to overfitting at 
the training stage. WDRVI with two bands, green and NIR, was able to estimate green LAI with 
NRMSE below 13%.

The smallest NRMSEs of LAI estimation around 11.8% for all three techniques (MLR, SVM, and 
NN) were obtained using MERIS data. To achieve this accuracy, SVM used only three bands and 
addition of a fourth band decreased accuracy. In contrast, MLR reached maximal accuracy using 
five bands and NN six bands. However, when the fifth and sixth bands were added, the reduction 
in NRMSE was very small (0.1%–0.25%). WDRVI with two bands, red edge and NIR, achieved 
NRMSE < 12% and explained more than 83% of LAI variation in the two crops taken together 
(Figure 1.12). Sentinel-2 MSI and Sentinel 3 OLCI estimates based on simulated data had NRMSE 
below 8%. However the accuracy of these models with actual MSI and OLCI surface reflectance 
products remains to be determined.

These findings lay a strong foundation for the development of generic algorithms that are crucial 
for remote sensing of vegetation biophysical parameters. The bands retained by SVM, NN, PLS, 
and VI were in close agreement and were confirmed in [35] by Gaussian processes regression where 
top performances were found with between four and nine bands, and all of them relied on a band 
in the red edge and other bands in relevant absorption regions. Identifying informative spectral 
bands across all four techniques provided insight into spectral features of reflectance specific for 
each species as well as those that are common to species with different leaf structures, canopy 
architectures, and photosynthetic pathways.
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1.6  GROSS PRIMARY PRODUCTION

Vegetation productivity is the basis of all the biospheric functions on the land surface and is defined 
as the production of organic matter through photosynthesis. The total amount of organic matter 
produced through photosynthesis is termed the gross photosynthesis, and if expressed as the integral 
of the organic matter produced by all the individual plants in a defined area per unit of time, is termed 
the gross primary productivity (GPP). Given that the vegetation productivity is directly related to 
the interaction of solar radiation with the plant canopy [9–11], remote sensing techniques are used 
to measure vegetation productivity.

In the first CALMIT/UNL publications on remote estimation of crop GPP it was hypothesized 
that crop photosynthesis and GPP relate closely to total canopy/stand Chl content and thus that GPP 
can be estimated remotely using Chl-related models [11]. Using limited data sets it was shown that 
GPP could be estimated accurately by vegetation indices closely related to Chl content (CIred edge, 
MTCI and CIgreen). Rational for the hypothesis was (Figure 1.13): (i) fAPAR vs. Chl relationship was 
essentially not linear with significant (more than 5-fold) decrease of slope as Chl > 2 g m−2 and the 
slope was close to zero for Chl > 3 g m−2 (Figure 1.13a); (ii) in contrast to fAPAR, with increase 
in Chl above 2 g m−2 GPP steadily increased (Figure 1.13b), so GPP was sensitive to Chl content 
despite substantial decrease of fAPAR sensitivity to Chl; (iii) light use efficiency was found to be 
related to Chl content (Figure 1.13c) and it explained high sensitivity of GPP to moderate-to-high 
Chl (see [36–38] for detail).

This new paradigm based on total Chl content was elaborated using multiyear data taken over 
maize and soybean at three irrigated and rain-fed AmeriFlux sites in Nebraska, USA [36–38]. A 
model was suggested relating crop GPP to a product of total canopy Chl content and incoming 
photosynthetically active radiation, PARin [37–38]. Canopy Chl content was estimated by VIs closely 
related to Chl content. It was shown that the Chl–PARin model was able to accurately estimate 
GPP using VIs retrieved from reflectance data taken at close range over maize, soybean, and wheat 
[11,37–38] as well as grassland [39].

For application of the model for estimating GPP in C3 and C4 crops with no parameterization of 
algorithms, two questions were addressed: (i) Are the algorithms developed for maize and soybean 
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different? (ii) Is it possible to develop a unified generic algorithm for GPP estimation in both maize 
and soybean? It was shown that several VIs may be used for generic GPP assessment—Figure 1.14 
[37–38]. The use of red edge NDVI, red edge WDRVI, CIgreen and CIred edge allowed for estimation of 
GPP in both crops with no parameterization, with NRMSE < 10%. However, only CIred edge and red 
edge NDVI were not species specific for maize and soybean.

To apply the model for estimating crop GPP to satellite data, three approaches were used with 
respect to PAR: (i) incident PAR (PARin), (ii) PAR retrieved from short-wave radiation data [40], and 
(iii) potential photosynthetically active radiation (PARpot) [41–42]. PARpot is the PARin value under 
conditions of minimal aerosol loading; it represents the seasonal changes in hours of sunshine (i.e., 
day length). It was shown that the use of a product of Chl-related VI and PARpot gave significantly 
decreased uncertainties of GPP estimation compared with other approaches [41–43].

Concurrent GPP and TM/ETM+ Landsat observations during 2001–2008 over the three 
Nebraska AmeriFlux sites represented a wide range of GPP variation (maize GPP ranging from 
0 to 31 gC/m2/d; soybean GPP ranging from 0 to 18 gC/m2/d) [41]. The GPP vs. NDVI × PARpot 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5

neerg
R

AP
Af

Canopy chlorophyll, g/m2

0

5

10

15

20

25

30

35

0 10000 20000 30000 40000 50000 60000 70000

m/
Cg,PP

G
2 /d

Total Crop Chl*PAR, g/m2*mmol/m2/d

RMSE = 2.276 
gC/m2/d

R² = 0.46

0

0.0005

0.001

0.0015

0.002

0.0025

0 1 2 3 4 5

E
UL

Canopy chlorophyll, g/m2

(a) (b)

(c)

FIGURE 1.13  Fraction of PAR absorbed by photosynthetically active vegetation (fAPARgreen) (a), gross 
primary production (GPP) (b), and light use efficiency (LUE) (c) plotted versus canopy Chl content in maize. 
Hyperspectral reflectance data (110 observations) were taken at close range and GPP was measured at three 
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relationship was nonlinear, with slope decreasing as GPP increased. MODIS and Landsat-derived 
NDVI was a good indicator of low-to-moderate GPP, but it was less accurate in detecting GPP when 
it exceeded 20 gC/m2/d. The normalized difference VIs (NDVI, green NDVI, and green WDRVI) 
performed better than ratio-based VIs (SR and CIgreen): the NRMSE were >12% for ratio VIs but 
<8.5% for normalized difference VIs (Table 1.3). Except for green NDVI, all VIs tested in [41] were 
species specific for maize and soybean. For the same GPP, the value of VI × PARpot in soybean was 
consistently higher than that in maize with VIs calculated from reflectance in NIR and red bands. 
This result is due to contrasting leaf structures and canopy architectures of maize and soybean 
[11]. Thus, prior information about crop types is required when VIs with red and NIR bands are 
used for GPP estimation. However, when green band was used in NDVI, the green NDVI vs. GPP 
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TABLE 1.3
Determination Coefficients (R2), RMSE, and NRMSE for Relationships GPP vs. VI × PARpot 
with VIs Retrieved from TM/ETM+ Landsat Atmospherically Corrected Images Taken over 
AmeriFlux Maize Sites from 2001 through 2008 and Soybean Sites in 2002, 2004, 2006, 
and 2008

Vegetation 
Index

Maize Soybean

R2 RMSE (gC/m2/d) NRMSE (%) R2 RMSE (gC/m2/d) NRMSE (%)

Green WDRVI 0.95 1.90 6.1 0.90 1.54 8.1

EVI2 0.95 1.92 6.2 0.87 1.79 9.5

Green NDVI 0.94 2.20 7 0.92 1.40 7.5

NDVI 0.93 2.22 7.1 0.89 1.65 8.7

CIgreen 0.91 2.67 8.5 0.76 2.42 12.3

SR 0.84 3.49 11.0 0.67 2.79 14.2

Note:	 The vegetation index names are given in full in the text. PARpot, potential photosynthetically active radiation. RMSE, 
root mean square error. NRMSE, normalized root mean square error.
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relationships for maize and soybean were close, allowing accurate GPP estimation in both crops 
using the same algorithm (Figure 1.15, Table 1.3).

MODIS 250-m data bring high temporal resolution. To test performance of the model for 
estimating GPP in irrigated and rain-fed maize and soybean croplands, eight years of MODIS 250-m 
data were collected and analyzed [40,42]. NDVI, EVI2, WDRVI, and SR were tested in the models. 
The best performance was found for WDRVI- and EVI2-based models [42] (Figure 1.16).

Thus, our results suggest that about 90% of GPP variation in crops is explained by total canopy 
Chl content [43–46]. It was also confirmed for wheat [47] and grasslands [48]. Assuming an invariant 
LUEgreen, GPP in crops and grasslands may be accurately retrieved from close-range and satellite 
data [44–45,47–53]. LUEgreen is affected by many factors, specifically cloudiness coefficient [54] as 
well as daytime temperature, vapor pressure deficit, and phenology [55]. It was shown that the effect 
of all these factors on LUEgreen resulted in normalized standard deviations of LUEgreen for irrigated 
and rain-fed maize of 11.9% and for irrigated and rain-fed soybean of 13.3%, thus demonstrating 
convergence of LUEgreen to a narrow range [56]. Recently was found that the maximum daily LUE 
based on PAR absorption by canopy Chl, unlike other expressions of LUE, tends to converge across 
biome types [57]. Thus, taking into account conservative behavior of LUEgreen, high accuracy of 
GPP estimation based on Chl-related vegetation indices and incident or potential PAR it is not 
surprising.

The question remains: Is a situation of limited resource availability and high resource acquisition 
costs a reason for efficient resource use and convergence of LUEgreen? Such a scenario results in 
an optimization of resource allocation, which then results in a maximization of carbon gains and 
a convergence on a narrow range of LUEgreen as was suggested in [58,59]. In this case, the plant 
response to stress is a decrease in radiation absorbed by photosynthetically active green vegetation 
such that LUEgreen remains relatively invariant.

Our results have important implications for remote estimating of primary production in crops. 
Convergence of LUEgreen allows the use of simple robust gross primary production models and also 
a better understanding of the role and constraints of LUEgreen in process-based models. Assuming 
invariant LUEgreen, the models based on either the canopy/stand/community Chl content or green 
LAI may facilitate accurate assessments of primary production and plant optimization patterns at 
multiple scales, from leaves to canopies and entire regions.
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1.7  CONCLUSIONS

Remote sensing techniques for estimating six crop biophysical and biochemical characteristics—
vegetation fraction, fraction of PAR absorbed by photosynthetically active vegetation, chlorophyll 
content, nitrogen content, green leaf area index, and gross primary production—have been presented 
in this chapter. All techniques were tested using reflectances acquired from close range (6 meters 
above the top of the canopy) as well as TM/ETM+ Landsat, MODIS, and MERIS satellite data. It was 
shown that the aforementioned characteristics can be estimated accurately using remotely sensed data. 
Moreover, generic algorithms were developed that do not require parameterization for crops studied.

Tables 1.1 through 1.3 summarized the accuracy of estimating biophysical characteristics. The 
choice of index depends on the spectral characteristics of the radiometer or the satellite sensor 
being used. The indices employing red edge spectral bands, namely, CIred edge, MTCI, VARIred edge, 
NDVIred edge, and WDRVIred edge, can be used for satellite systems with spectral bands in the red edge 
region (Sentinel-2, Sentinel-3, and Venµs). The indices employing green spectral band, namely, 
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NDVIgreen, VARIgreen, CIgreen, and WDRVIgreen, can be used for satellite systems with spectral bands 
in the green region (e.g., Landsat, MODIS 500 m and 1 km spatial resolution, Venµs, Sentinel-2, and 
Sentinel-3). The indices using only red and NIR spectral bands, namely, NDVI, EVI2, and WDRVI, 
can be used for crop monitoring by satellite systems such as AVHRR, Landsat, MODIS (250 m 
spatial resolution) and Venµs.

The implications of these findings are far-reaching since the techniques described open a 
new possibility for accurate estimation of crop biochemical and biophysical characteristics 
at different scales, from close range to satellite altitudes. Some of the techniques based on 
the red, green, and NIR bands allow use of the extensive archive of Landsat and AVHRR 
imagery  acquired since the early 1970s and the 250 m spatial resolution MODIS imagery 
acquired since 2001.

With these techniques, it is now possible to obtain global synoptic estimates of crop biochemical 
and biophysical characteristics at 20 and 30 m spatial resolution (Sentinel-2, Landsat TM/ETM+) and 
at 250 m/300 m resolution (MODIS and Sentinel-3). The performances of the algorithms were tested 
for maize, soybean, potato, rice, and wheat. These crops have very different canopy architectures 
and leaf structures. Still, the techniques developed yielded accurate estimations, which indicates that 
these techniques are likely applicable to other crops as well.
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