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Abstract

We present here results that demonstrate the potential of the recently launched Ocean and Land
Colour Instrument (OLCI) onboard the satellite Sentinel-3A to deliver accurate estimates of
chlorophyll-a (chl-a) concentration in coastal waters using reflectances in the red and near-infrared
(NIR) spectral regions. Two-band and three-band NIR-red models that were previously used for data
from the MEdium Resolution Imaging Spectrometer (MERIS) were applied to OLCI data from the Sea
of Azovand the Taganrog Bay, Russia. Atmospherically corrected reflectance data from OLCI were
compared to in situ reflectance data collected concurrently with a field spectrometer. Results show
that the default atmospheric correction procedure currently applied to OLCI data performs well in
preserving the spectral shape of chl-a-specific reflectance features in the red and NIR regions. Similar
to what was achieved with MERIS data, the NIR-red models yield accurate estimates of chl-a
concentration, with accuracies on the order of 90%, though the parameters of the NIR-red algorithms
based on OLCI data are slightly different from what was obtained with MERIS data. More data, from
various geographical locations, need to be analyzed to establish robust NIR-red algorithms for

OLClI data.

1. Introduction

Water quality is a key indicator of ecosystem health. The ability to detect water quality through remote sensing
has greatly aided effective monitoring of ecosystem changes and has opened ways for gaining new insights into
processes and ecosystem dynamics that drive the changes and also the impact of the changes. This is particularly
important in coastal and inland waters that are significantly impacted by events on land.

The concentration of chlorophyll-a (chl-a), a proxy for the trophic status of water body, is a key water quality
parameter and is commonly used to monitor the biophysical status of a water body (e.g., [1]). Accurately
estimating chl-a concentration in turbid and productive coastal waters is challenging on multiple fronts. The
presence of suspended sediments and colored dissolved organic matter in addition to chl-a makes the water-
leaving radiance signal optically complex, resulting in increased difficulty in isolating chl-a-specific spectral
features and determining chl-a concentration (e.g., [2]). Correcting for atmospheric effects on satellite data can
be particularly difficult if sources of atmospheric pollutants, such as industrial factories, are located nearby on
land, which can produce atmospheric aerosol mixtures that are very different from what is modeled in typical
aerosol models (e.g., [3]). The proximity of land enhances the chances of spurious signal due to contribution
from adjacent land pixels (e.g., [4]), which could be significant depending on factors such as topography and
illumination/viewing geometry.

In spite of the aforementioned challenges, several algorithms have been developed and applied, with varying
degrees of success, to estimate chl-a concentration in coastal waters [5—7]. In particular, we have previously
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Figure 1. An OLCI image showing the study region and the station locations (June 2016 (n = 9): yellow; July 2016 (n = 5): green;
September 2016 (n = 7): orange; April 2017 (n = 6): red; July 2017 (n = 7): magenta; May-June 2018 (n = 15): white).

developed two-band and three-band algorithms based on red and near-infrared (NIR) spectral channels of the
MEdium Resolution Imaging Spectrometer (MERIS), which have consistently yielded highly accurate estimates
of chl-a concentration for coastal and inland waters in various geographic locations using remote sensing data
measured using field spectrometers, airborne sensors, and satellites, and data simulated using a radiative transfer
model [8—14]. NIR-red algorithms are suitable for waters with chl-a concentrations high enough (upwards of
3-5mgm "’ [5]) to produce discernible spectral features in the red and NIR regions of the reflectance spectrum.
After MERIS ceased functioning in 2012, the European Space Agency developed its replacement, the Ocean and
Land Colour Instrument (OLCI), and launched it onboard the space mission Sentinel-3A in February 2016.
OLClI has all of the spectral channels of MERIS with a few additional channels. A few studies have demonstrated
the potential and the challenges of retrieving reliable water quality products from OLCI data [15—17]. The goal of
this study is to examine whether the two-band and three-band NIR-red algorithms can yield similar accuracies
when applied to OLCI data as were previously obtained from MERIS data. Besides accuracy, we also examined
the parameters of the NIR-red algorithms based on OLCI data and compared them to what were previously
obtained from MERIS data. The spectral fidelity of OLCI data was also examined by comparison with in situ
measured reflectance data.

2.Data and methods

2.1.Study area and in situ measurements

The study area is the same region where we had previously worked with MERIS data [12—14]—the Sea of Azov, a
shallow inland sea north of the Black Sea, adjoined by Russia on the east and Ukraine on the west, and Taganrog
Bay, which is located on the northeastern part of the Sea of Azov (figure 1). These water bodies are shallow, with
low salinity and high influx of nutrients from several surrounding rivers that run through industrial and
agricultural land, often resulting in eutrophic and hypertrophic conditions, especially in Taganrog Bay, where
algal blooms are common [18-20]. We have previously [ 14] described the suitability of these waters for testing
remote sensing algorithms for retrieving coastal water quality products.

Researchers at the Southern Scientific Center of the Russian Academy of Sciences, in Rostov-on-Don,
Russia, undertook in situ data collection campaigns on the Sea of Azov and the Taganrog Bay in June, July, and
September 0f 2016, April and July of 2017, and May and June of 2018. At each station, water samples were
collected to determine in situ chl-a concentration. Water samples were filtered through Whatman GF/F glass
filters. Chl-a was extracted from the filers using acetone. Chl-a concentration was determined
spectrophotometrically using Jeffrey and Humphrey’s [21] trichromatic equations.

In June 2016, besides chl-a concentration, the water-leaving radiance was also measured, using an S-41
spectrometer manufactured by SOLAR Laser Systems. S-41 is a miniature single-channel lens spectrometer that
uses a three-lens achromat-anastigmat system for camera foreoptics. The spectrometer offers a choice of three
spectral ranges of operation, namely, 200-400 nm, 390780 nm, and 754—1140 nm. For this campaign, data
were collected in the 390—-780 nm range. The spectrometer uses a diffraction grating to spectrally split the
incoming light, resulting in a spectral resolution of about 1.7 nm.
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Above-water radiance measurements were taken by pointing the S-41 spectrometer downward towards the
water surface at a viewing angle of about 40° off nadir and an azimuthal angle of 135° from the solar plane, as
recommended by NASA’s protocol for ocean optics measurements [22], to minimize specular reflection of solar
radiation into the spectrometer. A 97% reflective Spectralon panel coated with barium sulfate was used to
normalize the above-water radiance measurements and derive the remote sensing reflectance (R,,). R,; was
calculated as follows:

Rrs _ Lw+s - p(G)Lsky (1)
(WLref/Rref)

where, L, ,is the radiance recorded above the water, which includes radiance from the water column, the water
surface, and the sky; Ly, is the sky radiance; L,.¢is the radiance measured over the Spectralon reference panel; R,
is the reflectivity of the reference panel; and p () is a proportionality factor that relates the sky radiance reflected
from the water surface to the sky radiance measured by pointing the spectrometer towards the sky. p() is
dependent on the direction and speed of wind, the field-of-view (FOV) of the detector, and the angular
distribution of the sky radiance, and is equal to the average Fresnel reflectance over the detector FOV in the case
of a calm, level water surface with a uniformly distributed sky radiance. The measurements were taken within the
range of conditions for which a p(#) value 0f 0.028 is recommended [23].

2.2.OLCI data

OLCI contains 15 spectral channels with the same spectral characteristics of MERIS and six additional channels,
for a total of 21 channels spanning the 420-1020 nm range. Of the six additional channels, the channels centered
at400 nm and 1020 nm are expected to improve the ability to characterize atmospheric aerosols and correct for
atmospheric effects; two channels centered at 764.4 nm and 767.5 nm, near the oxygen absorption line, are
expected to improve cloud height detection; the channel at 940 nm is expected to improve water vapor retrieval;
and the channel at 673 nm is expected to provide more accurate measures of chlorophyll fluorescence. Besides
the additional spectral channels, other improvements in OLCI include, higher signal-to-noise ratio, finer
radiometric resolution, sun-glint mitigation through camera tilt, potentially better radiometric stability, and
more robust characterization of the instrument to account for stray light contamination. The spatial resolution
is the same as for MERIS, at about 300 m.

Level-2 OLCI images, containing surface reflectance data corrected for atmospheric effects, were used.
Atmospheric effects were accounted for by using the same procedure that was used for MERIS, with the Bright
Pixel Atmospheric Correction [24, 25] option applied to pixels classified as Case IT water pixels, which included
all pixels corresponding to the in situ stations. Even though we allowed a temporal difference of only up to two
days between the in situ and satellite data acquisitions in our past studies [ 12] in this region, we relaxed it to £3
days for this study because adding an additional day did not introduce any perceptible additional variation in the
dataset as the data were collected during periods of fairly stable weather conditions and it resulted in more data
points for analysis, especially in the moderate chl-a range. Additionally, the following criteria [12] were applied
in choosing satellite pixels and the corresponding in situ stations for this study:

+ thestation is at a distance of at least two pixel lengths from the shore, to minimize adjacency effects from land.
+ the pixel s free of clouds/haze.

+ theatmospherically corrected surface reflectance for the pixel is not negative beyond 443 nm and up to
800 nm.

+ the magnitude and spectral shape of the reflectance are typical of inland and coastal waters.

Applying the aforementioned criteria resulted in 49 data pairs. The temporal difference was zero days for 17
pairs, one day for 9 pairs, two days for 16 pairs, and three days for 7 pairs. The effect of temporal differenceisa
function of factors such as the local weather and storm events that could trigger rapid changes in water quality.
No such events occurred during and around the in situ data collection campaigns.

2.3.NIR-red models

NIR-red algorithms for estimating chl-a concentration are based on the strong absorption by chl-a in the red
region, around 670 nm (e.g., [26]), and the peak in reflectance in the NIR region (e.g., [27]), caused by the
combined effect of progressively decreasing absorption by chl-a and increasing absorption by water. The
position and magnitude of this peak vary as a function of chl-a concentration [28] and can be used to estimate
chl-a concentration, especially in turbid and productive waters, where algorithms based on reflectance in blue
and green spectral regions fail due to the spectral influence of dissolved organic matter and suspended particles
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Figure 2. Plots of chl-a concentrations measured in situ versus the (a) two-band and (b) three-band NIR-red model values for the
calibration dataset.

in the water column and two-band and three-band NIR-red models have provided consistently high accuracy [5,
8—14]. The two-band NIR-red model is simple in its formalism and is a straightforward division of the
reflectance peak in the NIR by the reflectance trough in the red. The three-band NIR model uses a third NIR
channel and attempts to explicitly account for absorption by non-algal particles by using a subtraction term to
remove from the red reflectance any absorption due to non-algal particles, which is assumed to be constant at
both wavelengths. The development of the NIR-red models has been discussed in detail by Dall’Olmo and
Gitelson [29].Considering the locations of the OLCI spectral channels in the red and NIR regions, the OLCI-
based two-band and three-band NIR-red models are,

Two-Band OLCI Model: Chl-a o< [Regs X Rygol )

Three-band OLCI model: Chl-a o< [(Rges — Rype) X Rysy] (3)

3. Results and discussion

The dataset was divided into calibration and validation datasets in order to calibrate the relationships between
the OLCI-based NIR-red models and chl-a concentrations and test the accuracy of the resulting NIR-red
algorithms. Calibration and validation datasets are often obtained by grouping all the data together, sorting
them in ascending order of the magnitude of the parameter of interest, and evenly splitting them into calibration
and validation datasets. However, when the data are split in this manner, the calibration dataset encompasses all
spatio-temporal conditions contained in the validation dataset, rendering the validation non-independent of the
calibration. Our choice of data for calibration was guided by two criteria, (i) data that span a wide range of chl-a
concentrations and (ii) data that are temporally distinct from the validation dataset. We chose data from June
2016, which contained moderate-high chl-a concentrations, and April 2017, which contained low-moderate
chl-a concentrations, for calibration. Altogether, there were 15 data points in the calibration dataset and 34 data
points in the validation dataset. The minimum, maximum, median, and mean of chl-a concentrations in the
calibration dataset were 1.81,96.41,22.84,and 31.34 mg m >, respectively, whereas the minimum, maximum,
median, and mean for the validation dataset were 1.3, 84.27,7.50, and 12.09 mg m .

Both two-band and three-band NIR-red models exhibited a close relationship with iz situ measured chl-a
concentrations in the calibration dataset (figure 2), each with a determination coefficient of 0.95, resulting in the
following OLCI-based NIR-red algorithms:

Two-Band: Chl-a = 45.597(R¢s X Ryge) — 26.451 (4)
Three-Band: Chl-a = 153[(Rgs — Ryge) X Rysq] + 18.728 (5)

The NIR-red algorithms were applied to the validation data (figure 3). The chl-a concentrations estimated
using the two-band NIR-red algorithm had a Root Mean Square Error (RMSE) of 6.53 mg m > and a Mean
Absolute Error (MAE) of 4.53 mg m >, which are 7.88% and 5.46%, respectively, of the range of chl-a
concentrations in the validation dataset. The RMSE and MAE for the three-band NIR-red model were
7.0 mg m™>and 4.58 mg m >, which correspond to 8.45% and 5.52%, respectively, of the range of chl-a
concentrations in the validation dataset.

Except for a slight overestimation in the 20-40 mg m ™ range (figure 3), both algorithms yielded accurate
estimates. More data need to be collected and analyzed in order to evaluate any potential systematic bias in this
range. It is worth noting that the coefficients of the OLCI-based NIR-red algorithms are quite different from
those for the previously published MERIS-based algorithms [12].
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Figure 3. Plots of chl-a concentrations measured in situ versus chl-a concentrations estimated using the OLCI-based (a) two-band
(equation (4)) and (b) three-band NIR-red (equation (5)) algorithms for the validation dataset.
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Figure 4. Relationships between the (a) two-band and (b) three-band NIR-red algorithms and chl-a concentration for OLCI data
based on three different radiometric calibrations, previously established MERIS-based algorithms, and S41 field spectrometer data.

Two-Band MERIS NIR-red Algorithm:
Chl-a = 61.324(Rggs X Ryog) — 37.94 (6)

Three-Band MERIS NIR-red Algorithm:
Chl-a = 232.29[(Ress — Rogh) X Rys3] + 23.174 @)

The MERIS-based algorithms exhibited a similar relationship with chl-a concentrations as did sensor-
independent NIR-red algorithms that were developed based on radiative transfer modeling [11, 13]. Given that
the characteristics of the MERIS and OLCI spectral channels used in the NIR-red algorithms are essentially the
same and the atmospheric correction procedure applied is also the same, the difference in the coefficients are
likely attributable to differences between the radiometric characteristics of MERIS and OLCI. Being a new
sensor, the radiometric stability of OLCI is still under study and its radiometric calibration has been continually
monitored and adjusted, with the calibration coefficients adjusted and the data reprocessed multiple times post-
launch, as would be the case for any new sensor. With each reprocessing, the magnitude of the satellite-derived
reflectance changes, which impacts the coefficients of the NIR-red algorithms. The results presented above are
based on the latest reprocessing. For the data collected in June 2016, we had corresponding OLCI data in three
versions of radiometric calibration—the original calibration implemented during the commissioning phase, the
first reprocessing implemented in 2017, and the latest reprocessing implemented in 2018. Figure 4 shows the
linear relationships of the NIR-red algorithms with chl-a concentration determined based on each of the three
versions of OLCI data and the MERIS-based NIR-red algorithms for the June 2016 dataset. Also plotted is the
relationship based on reflectance measurements from the S41 field spectrometer. As can be seen, each successive
reprocessing of OLCI data has resulted in further deviation from the MERIS-based relationship, even though the
OLCI-based algorithms are as close as or even closer to the relationship based on field spectrometer data than are
the MERIS-based algorithms. Moreover, each successive reprocessing has resulted in further deviation from the
field-spectrometer-based relationship as well. It must be noted very clearly that these results are simply
presented as observations with no explicit or implicit intent to infer any conclusion about the quality or validity
of successive radiometric calibrations of OLCI data. We do not suggest the use of NIR-red algorithms or any
other derived product as a proxy for assessing the validity of radiometric calibration. However, it is worth noting
the effects of radiometric calibration on the algorithms, especially if these algorithms are to be applied to data
spanning long periods of time or data from multiple sensors.

OLCI-derived reflectances compared well with in situ reflectance measurements taken with the S41 field
spectrometer (figure 5). The plots shown in figure 5 are typical of the comparisons obtained for 24 pairs of S41
and OLCI reflectance data, with the comparisons for some stations better and for others worse than what is
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Figure 5. Plots comparing in situ reflectance with reflectance retrieved from OLCI based on the (a) original and (b) the latest
radiometric calibrations from three different stations at different temporal differences between the in situ and satellite measurements.

shown. In cases where the comparison was worse, the spectra differed mostly only in magnitude, with the
spectral shapes remaining similar. The reprocessing generally resulted in lower reflectance, especially in the
short wavelengths. This decrease in the magnitude of reflectance is likely due to the application of vicarious gains
in the reprocessing step by EUMETSAT (European Organisation for the Exploitation of Meteorological
Satellites), the agency with operational responsibility over the Sentinel-3 mission. The vicarious gains, which
were not applied to the original version of OLCI data, were applied in successive reprocessing steps to counter
excessive brightness that was observed in the top-of-atmosphere data from the original calibration.

Spectral angle was used to further assess the comparison between the S41 and OLCl reflectance data. The
spectral angle was calculated as,

b
1 Z?:lpiri
b b
\/Z?:1pi2 \/Z?:1ri2

where, nb is the number of wavelengths in the spectrum, p; is the OLCI reflectance at the ith wavelength, and r;is
the corresponding S41 reflectance. The average spectral angle of separation between S41 and OLCl reflectance

®)

Spectral Angle = cos™
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was progressively larger with each successive reprocessing, with the average spectral angle being 0.21 radians for
the original processing, 0.27 radians for the first reprocessing, and 0.35 radians for the latest reprocessing.
Nevertheless, the reflectance retrieved from OLCI generally compared quite well with S41 reflectance, thus
demonstrating the validity of the radiometric calibration and the default atmospheric correction procedure
currently implemented in the OLCI data processing scheme, at least in the context of using the reflectance in the
red and NIR regions for estimating chl-a concentration.

4, Conclusion

The results presented demonstrate the potential for the use of OLCI data for monitoring water quality in turbid
productive inland and coastal waters. The validity and stability of the coefficients of the OLCI-based NIR-red
algorithms need to be tested with long-term data, especially as the radiometric calibration of the sensor is
continually monitored and adjusted. Though differences in the results arising from the various versions of
radiometric calibration of OLCI have been noted, these results are not meant to be used to draw any conclusion
on the quality of a particular version of radiometric calibration. In spite of the anticipated launch of spaceborne
hyperspectral sensors in the near future, multispectral algorithms such as the NIR-red algorithms, which were
developed based on well-defined inherent spectral properties of water constituents, will continue to play a vital
role in determining water quality from satellite data. With continued monitoring of the radiometric stability of
the OLCI sensor and long-term acquisition of i situ data, robust NIR-red algorithms can be developed for
operational estimation of chl-a concentration in inland and coastal waters using OLCI data.
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