
Environmental Research Communications

LETTER • OPEN ACCESS

OLCI-based NIR-red models for estimating chlorophyll-a concentration in
productive coastal waters—a preliminary evaluation
To cite this article: Wesley J Moses et al 2019 Environ. Res. Commun. 1 011002

 

View the article online for updates and enhancements.

This content was downloaded from IP address 109.66.5.103 on 04/02/2019 at 20:55

https://doi.org/10.1088/2515-7620/aaf53c


Environ. Res. Commun. 1 (2019) 011002 https://doi.org/10.1088/2515-7620/aaf53c

LETTER

OLCI-based NIR-redmodels for estimating chlorophyll-a
concentration in productive coastal waters—a preliminary evaluation

Wesley JMoses1 , Vladislav Saprygin2, VictoriaGerasyuk2, Vasiliy Povazhnyy2, SergeyBerdnikov2 and
AnatolyAGitelson3

1 USNaval Research Laboratory,Washington,DC,United States of America
2 Southern ScientificCenter of the RussianAcademy of Sciences, Rostov-on-Don, 344 000Russia
3 Technion—Israel Institute of Technology,Haifa, Israel

E-mail: wesley.moses@nrl.navy.mil

Keywords: remote sensing, OLCI, chlorophyll-a, NIR-red algorithms, atmospheric correction, productive coastal waters

Abstract
Wepresent here results that demonstrate the potential of the recently launchedOcean and Land
Colour Instrument (OLCI) onboard the satellite Sentinel-3A to deliver accurate estimates of
chlorophyll-a (chl-a) concentration in coastal waters using reflectances in the red and near-infrared
(NIR) spectral regions. Two-band and three-bandNIR-redmodels that were previously used for data
from theMEdiumResolution Imaging Spectrometer (MERIS)were applied toOLCI data from the Sea
of Azov and the Taganrog Bay, Russia. Atmospherically corrected reflectance data fromOLCIwere
compared to in situ reflectance data collected concurrently with a field spectrometer. Results show
that the default atmospheric correction procedure currently applied toOLCI data performswell in
preserving the spectral shape of chl-a-specific reflectance features in the red andNIR regions. Similar
towhatwas achievedwithMERIS data, theNIR-redmodels yield accurate estimates of chl-a
concentration, with accuracies on the order of 90%, though the parameters of theNIR-red algorithms
based onOLCI data are slightly different fromwhatwas obtainedwithMERIS data.More data, from
various geographical locations, need to be analyzed to establish robustNIR-red algorithms for
OLCI data.

1. Introduction

Water quality is a key indicator of ecosystemhealth. The ability to detect water quality through remote sensing
has greatly aided effectivemonitoring of ecosystem changes and has openedways for gaining new insights into
processes and ecosystemdynamics that drive the changes and also the impact of the changes. This is particularly
important in coastal and inlandwaters that are significantly impacted by events on land.

The concentration of chlorophyll-a (chl-a), a proxy for the trophic status of water body, is a keywater quality
parameter and is commonly used tomonitor the biophysical status of awater body (e.g., [1]). Accurately
estimating chl-a concentration in turbid and productive coastal waters is challenging onmultiple fronts. The
presence of suspended sediments and colored dissolved organicmatter in addition to chl-amakes thewater-
leaving radiance signal optically complex, resulting in increased difficulty in isolating chl-a-specific spectral
features and determining chl-a concentration (e.g., [2]). Correcting for atmospheric effects on satellite data can
be particularly difficult if sources of atmospheric pollutants, such as industrial factories, are located nearby on
land, which can produce atmospheric aerosolmixtures that are very different fromwhat ismodeled in typical
aerosolmodels (e.g., [3]). The proximity of land enhances the chances of spurious signal due to contribution
fromadjacent land pixels (e.g., [4]), which could be significant depending on factors such as topography and
illumination/viewing geometry.

In spite of the aforementioned challenges, several algorithms have been developed and applied, with varying
degrees of success, to estimate chl-a concentration in coastal waters [5–7]. In particular, we have previously
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developed two-band and three-band algorithms based on red and near-infrared (NIR) spectral channels of the
MEdiumResolution Imaging Spectrometer (MERIS), which have consistently yielded highly accurate estimates
of chl-a concentration for coastal and inlandwaters in various geographic locations using remote sensing data
measured using field spectrometers, airborne sensors, and satellites, and data simulated using a radiative transfer
model [8–14]. NIR-red algorithms are suitable for waters with chl-a concentrations high enough (upwards of
3–5 mgm−3 [5]) to produce discernible spectral features in the red andNIR regions of the reflectance spectrum.
AfterMERIS ceased functioning in 2012, the European Space Agency developed its replacement, theOcean and
LandColour Instrument (OLCI), and launched it onboard the spacemission Sentinel-3A in February 2016.
OLCI has all of the spectral channels ofMERISwith a few additional channels. A few studies have demonstrated
the potential and the challenges of retrieving reliable water quality products fromOLCI data [15–17]. The goal of
this study is to examinewhether the two-band and three-bandNIR-red algorithms can yield similar accuracies
when applied toOLCI data as were previously obtained fromMERIS data. Besides accuracy, we also examined
the parameters of theNIR-red algorithms based onOLCI data and compared them towhat were previously
obtained fromMERIS data. The spectral fidelity of OLCI datawas also examined by comparisonwith in situ
measured reflectance data.

2.Data andmethods

2.1. Study area and in situmeasurements
The study area is the same regionwherewe had previously workedwithMERIS data [12–14]—the Sea of Azov, a
shallow inland sea north of the Black Sea, adjoined byRussia on the east andUkraine on thewest, andTaganrog
Bay, which is located on the northeastern part of the Sea of Azov (figure 1). Thesewater bodies are shallow,with
low salinity and high influx of nutrients from several surrounding rivers that run through industrial and
agricultural land, often resulting in eutrophic and hypertrophic conditions, especially in Taganrog Bay, where
algal blooms are common [18–20].We have previously [14] described the suitability of thesewaters for testing
remote sensing algorithms for retrieving coastal water quality products.

Researchers at the Southern ScientificCenter of the RussianAcademy of Sciences, in Rostov-on-Don,
Russia, undertook in situ data collection campaigns on the Sea of Azov and the Taganrog Bay in June, July, and
September of 2016, April and July of 2017, andMay and June of 2018. At each station, water samples were
collected to determine in situ chl-a concentration.Water samples were filtered throughWhatmanGF/F glass
filters. Chl-awas extracted from thefilers using acetone. Chl-a concentrationwas determined
spectrophotometrically using Jeffrey andHumphrey’s [21] trichromatic equations.

In June 2016, besides chl-a concentration, thewater-leaving radiancewas alsomeasured, using an S-41
spectrometermanufactured by SOLARLaser Systems. S-41 is aminiature single-channel lens spectrometer that
uses a three-lens achromat-anastigmat system for camera foreoptics. The spectrometer offers a choice of three
spectral ranges of operation, namely, 200–400 nm, 390–780 nm, and 754–1140 nm. For this campaign, data
were collected in the 390–780 nm range. The spectrometer uses a diffraction grating to spectrally split the
incoming light, resulting in a spectral resolution of about 1.7 nm.

Figure 1.AnOLCI image showing the study region and the station locations (June 2016 (n=9): yellow; July 2016 (n=5): green;
September 2016 (n=7): orange; April 2017 (n=6): red; July 2017 (n=7): magenta;May-June 2018 (n=15): white).
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Above-water radiancemeasurements were taken by pointing the S-41 spectrometer downward towards the
water surface at a viewing angle of about 40° off nadir and an azimuthal angle of 135° from the solar plane, as
recommended byNASA’s protocol for ocean opticsmeasurements [22], tominimize specular reflection of solar
radiation into the spectrometer. A 97% reflective Spectralon panel coatedwith barium sulfate was used to
normalize the above-water radiancemeasurements and derive the remote sensing reflectance (Rrs).Rrswas
calculated as follows:

r q
p

=
-+ ( )

( )
( )R

L L

L R
1rs

w s sky

ref ref

where, Lw+s is the radiance recorded above thewater, which includes radiance from thewater column, thewater
surface, and the sky; Lsky is the sky radiance; Lref is the radiancemeasured over the Spectralon reference panel;Rref

is the reflectivity of the reference panel; and r q( ) is a proportionality factor that relates the sky radiance reflected
from thewater surface to the sky radiancemeasured by pointing the spectrometer towards the sky. r q( ) is
dependent on the direction and speed of wind, the field-of-view (FOV) of the detector, and the angular
distribution of the sky radiance, and is equal to the average Fresnel reflectance over the detector FOV in the case
of a calm, level water surfacewith a uniformly distributed sky radiance. Themeasurements were takenwithin the
range of conditions forwhich a r q( ) value of 0.028 is recommended [23].

2.2.OLCI data
OLCI contains 15 spectral channels with the same spectral characteristics ofMERIS and six additional channels,
for a total of 21 channels spanning the 420–1020 nm range. Of the six additional channels, the channels centered
at 400 nmand 1020 nmare expected to improve the ability to characterize atmospheric aerosols and correct for
atmospheric effects; two channels centered at 764.4 nm and 767.5 nm, near the oxygen absorption line, are
expected to improve cloud height detection; the channel at 940 nm is expected to improvewater vapor retrieval;
and the channel at 673 nm is expected to providemore accuratemeasures of chlorophyll fluorescence. Besides
the additional spectral channels, other improvements inOLCI include, higher signal-to-noise ratio, finer
radiometric resolution, sun-glintmitigation through camera tilt, potentially better radiometric stability, and
more robust characterization of the instrument to account for stray light contamination. The spatial resolution
is the same as forMERIS, at about 300 m.

Level-2OLCI images, containing surface reflectance data corrected for atmospheric effects, were used.
Atmospheric effects were accounted for by using the same procedure that was used forMERIS, with the Bright
Pixel Atmospheric Correction [24, 25] option applied to pixels classified as Case II water pixels, which included
all pixels corresponding to the in situ stations. Even thoughwe allowed a temporal difference of only up to two
days between the in situ and satellite data acquisitions in our past studies [12] in this region, we relaxed it to±3
days for this study because adding an additional day did not introduce any perceptible additional variation in the
dataset as the data were collected during periods of fairly stable weather conditions and it resulted inmore data
points for analysis, especially in themoderate chl-a range. Additionally, the following criteria [12]were applied
in choosing satellite pixels and the corresponding in situ stations for this study:

• the station is at a distance of at least two pixel lengths from the shore, tominimize adjacency effects from land.

• the pixel is free of clouds/haze.

• the atmospherically corrected surface reflectance for the pixel is not negative beyond 443 nmandup to
800 nm.

• themagnitude and spectral shape of the reflectance are typical of inland and coastal waters.

Applying the aforementioned criteria resulted in 49 data pairs. The temporal difference was zero days for 17
pairs, one day for 9 pairs, two days for 16 pairs, and three days for 7 pairs. The effect of temporal difference is a
function of factors such as the local weather and storm events that could trigger rapid changes inwater quality.
No such events occurred during and around the in situ data collection campaigns.

2.3. NIR-redmodels
NIR-red algorithms for estimating chl-a concentration are based on the strong absorption by chl-a in the red
region, around 670 nm (e.g., [26]), and the peak in reflectance in theNIR region (e.g., [27]), caused by the
combined effect of progressively decreasing absorption by chl-a and increasing absorption bywater. The
position andmagnitude of this peak vary as a function of chl-a concentration [28] and can be used to estimate
chl-a concentration, especially in turbid and productive waters, where algorithms based on reflectance in blue
and green spectral regions fail due to the spectral influence of dissolved organicmatter and suspended particles
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in thewater column and two-band and three-bandNIR-redmodels have provided consistently high accuracy [5,
8–14]. The two-bandNIR-redmodel is simple in its formalism and is a straightforward division of the
reflectance peak in theNIR by the reflectance trough in the red. The three-bandNIRmodel uses a thirdNIR
channel and attempts to explicitly account for absorption by non-algal particles by using a subtraction term to
remove from the red reflectance any absorption due to non-algal particles, which is assumed to be constant at
bothwavelengths. The development of theNIR-redmodels has been discussed in detail byDall’Olmo and
Gitelson [29].Considering the locations of theOLCI spectral channels in the red andNIR regions, theOLCI-
based two-band and three-bandNIR-redmodels are,

µ ´-‐ ‐ [ ] ( )a R RTwo Band OLCI Model: Chl 2665
1

709

µ - ´- -‐ ‐ [( ) ] ( )a R R RThree band OLCI model: Chl 3665
1

709
1

754

3. Results and discussion

The dataset was divided into calibration and validation datasets in order to calibrate the relationships between
theOLCI-basedNIR-redmodels and chl-a concentrations and test the accuracy of the resultingNIR-red
algorithms. Calibration and validation datasets are often obtained by grouping all the data together, sorting
them in ascending order of themagnitude of the parameter of interest, and evenly splitting them into calibration
and validation datasets. However, when the data are split in thismanner, the calibration dataset encompasses all
spatio-temporal conditions contained in the validation dataset, rendering the validation non-independent of the
calibration.Our choice of data for calibrationwas guided by two criteria, (i) data that span awide range of chl-a
concentrations and (ii) data that are temporally distinct from the validation dataset.We chose data from June
2016, which containedmoderate-high chl-a concentrations, andApril 2017, which contained low-moderate
chl-a concentrations, for calibration. Altogether, therewere 15 data points in the calibration dataset and 34 data
points in the validation dataset. Theminimum,maximum,median, andmean of chl-a concentrations in the
calibration dataset were 1.81, 96.41, 22.84, and 31.34 mg m−3, respectively, whereas theminimum,maximum,
median, andmean for the validation dataset were 1.3, 84.27, 7.50, and 12.09 mgm−3.

Both two-band and three-bandNIR-redmodels exhibited a close relationshipwith in situmeasured chl-a
concentrations in the calibration dataset (figure 2), eachwith a determination coefficient of 0.95, resulting in the
followingOLCI-basedNIR-red algorithms:

= ´ --‐ ‐ ( ) ( )a R RTwo Band: Chl 45.597 26.451 4665
1

709

= - ´ +- -‐ ‐ [( ) ] ( )a R R RThree Band: Chl 153 18.728 5665
1

709
1

754

TheNIR-red algorithmswere applied to the validation data (figure 3). The chl-a concentrations estimated
using the two-bandNIR-red algorithmhad aRootMean Square Error (RMSE) of 6.53 mgm−3 and aMean
Absolute Error (MAE) of 4.53 mgm−3, which are 7.88% and 5.46%, respectively, of the range of chl-a
concentrations in the validation dataset. The RMSE andMAE for the three-bandNIR-redmodel were
7.0 mg m−3 and 4.58 mg m−3, which correspond to 8.45% and 5.52%, respectively, of the range of chl-a
concentrations in the validation dataset.

Except for a slight overestimation in the 20–40 mgm−3 range (figure 3), both algorithms yielded accurate
estimates.More data need to be collected and analyzed in order to evaluate any potential systematic bias in this
range. It is worth noting that the coefficients of theOLCI-basedNIR-red algorithms are quite different from
those for the previously publishedMERIS-based algorithms [12].

Figure 2.Plots of chl-a concentrationsmeasured in situ versus the (a) two-band and (b) three-bandNIR-redmodel values for the
calibration dataset.
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TheMERIS-based algorithms exhibited a similar relationshipwith chl-a concentrations as did sensor-
independentNIR-red algorithms thatwere developed based on radiative transfermodeling [11, 13]. Given that
the characteristics of theMERIS andOLCI spectral channels used in theNIR-red algorithms are essentially the
same and the atmospheric correction procedure applied is also the same, the difference in the coefficients are
likely attributable to differences between the radiometric characteristics ofMERIS andOLCI. Being a new
sensor, the radiometric stability ofOLCI is still under study and its radiometric calibration has been continually
monitored and adjusted, with the calibration coefficients adjusted and the data reprocessedmultiple times post-
launch, as would be the case for any new sensor.With each reprocessing, themagnitude of the satellite-derived
reflectance changes, which impacts the coefficients of theNIR-red algorithms. The results presented above are
based on the latest reprocessing. For the data collected in June 2016, we had correspondingOLCI data in three
versions of radiometric calibration—the original calibration implemented during the commissioning phase, the
first reprocessing implemented in 2017, and the latest reprocessing implemented in 2018. Figure 4 shows the
linear relationships of theNIR-red algorithmswith chl-a concentration determined based on each of the three
versions ofOLCI data and theMERIS-basedNIR-red algorithms for the June 2016 dataset. Also plotted is the
relationship based on reflectancemeasurements from the S41field spectrometer. As can be seen, each successive
reprocessing ofOLCI data has resulted in further deviation from theMERIS-based relationship, even though the
OLCI-based algorithms are as close as or even closer to the relationship based onfield spectrometer data than are
theMERIS-based algorithms.Moreover, each successive reprocessing has resulted in further deviation from the
field-spectrometer-based relationship aswell. Itmust be noted very clearly that these results are simply
presented as observationswith no explicit or implicit intent to infer any conclusion about the quality or validity
of successive radiometric calibrations ofOLCI data.We do not suggest the use ofNIR-red algorithms or any
other derived product as a proxy for assessing the validity of radiometric calibration.However, it is worth noting
the effects of radiometric calibration on the algorithms, especially if these algorithms are to be applied to data
spanning long periods of time or data frommultiple sensors.

OLCI-derived reflectances comparedwell with in situ reflectancemeasurements takenwith the S41field
spectrometer (figure 5). The plots shown infigure 5 are typical of the comparisons obtained for 24 pairs of S41
andOLCI reflectance data, with the comparisons for some stations better and for others worse thanwhat is

Figure 3.Plots of chl-a concentrationsmeasured in situ versus chl-a concentrations estimated using theOLCI-based (a) two-band
(equation (4)) and (b) three-bandNIR-red (equation (5)) algorithms for the validation dataset.

Figure 4.Relationships between the (a) two-band and (b) three-bandNIR-red algorithms and chl-a concentration forOLCI data
based on three different radiometric calibrations, previously establishedMERIS-based algorithms, and S41field spectrometer data.
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shown. In cases where the comparisonwasworse, the spectra differedmostly only inmagnitude, with the
spectral shapes remaining similar. The reprocessing generally resulted in lower reflectance, especially in the
short wavelengths. This decrease in themagnitude of reflectance is likely due to the application of vicarious gains
in the reprocessing step by EUMETSAT (EuropeanOrganisation for the Exploitation ofMeteorological
Satellites), the agencywith operational responsibility over the Sentinel-3mission. The vicarious gains, which
were not applied to the original version ofOLCI data, were applied in successive reprocessing steps to counter
excessive brightness thatwas observed in the top-of-atmosphere data from the original calibration.

Spectral angle was used to further assess the comparison between the S41 andOLCI reflectance data. The
spectral angle was calculated as,

å

å å
= - =

= =

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟ ( )

p r

p r
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i
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i
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2
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where, nb is the number of wavelengths in the spectrum, pi is theOLCI reflectance at the ithwavelength, and ri is
the corresponding S41 reflectance. The average spectral angle of separation between S41 andOLCI reflectance

Figure 5.Plots comparing in situ reflectancewith reflectance retrieved fromOLCI based on the (a) original and (b) the latest
radiometric calibrations from three different stations at different temporal differences between the in situ and satellitemeasurements.
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was progressively larger with each successive reprocessing, with the average spectral angle being 0.21 radians for
the original processing, 0.27 radians for the first reprocessing, and 0.35 radians for the latest reprocessing.
Nevertheless, the reflectance retrieved fromOLCI generally compared quite well with S41 reflectance, thus
demonstrating the validity of the radiometric calibration and the default atmospheric correction procedure
currently implemented in theOLCI data processing scheme, at least in the context of using the reflectance in the
red andNIR regions for estimating chl-a concentration.

4. Conclusion

The results presented demonstrate the potential for the use ofOLCI data formonitoringwater quality in turbid
productive inland and coastal waters. The validity and stability of the coefficients of theOLCI-basedNIR-red
algorithms need to be testedwith long-termdata, especially as the radiometric calibration of the sensor is
continuallymonitored and adjusted. Though differences in the results arising from the various versions of
radiometric calibration ofOLCI have been noted, these results are notmeant to be used to draw any conclusion
on the quality of a particular version of radiometric calibration. In spite of the anticipated launch of spaceborne
hyperspectral sensors in the near future,multispectral algorithms such as theNIR-red algorithms, whichwere
developed based onwell-defined inherent spectral properties of water constituents, will continue to play a vital
role in determiningwater quality from satellite data.With continuedmonitoring of the radiometric stability of
theOLCI sensor and long-term acquisition of in situ data, robust NIR-red algorithms can be developed for
operational estimation of chl-a concentration in inland and coastal waters usingOLCI data.
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