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Summary

The Normalized Difference Vegetation Index (NDVI) is widely used for monitoring, analyzing, and
mapping temporal and spatial distributions of physiological and biophysical characteristics of vege-
tation. It is well documented that the NDVI approaches saturation asymptotically under conditions
of moderate-to-high aboveground biomass. While reflectance in the red region (ρred) exhibits a nearly
flat response once the leaf area index (LAI) exceeds 2, the near infrared (NIR) reflectance (ρNIR) con-
tinue to respond significantly to changes in moderate-to-high vegetation density (LAI from 2 to 6) in
crops. However, this higher sensitivity of the ρNIR has little effect on NDVI values once the ρNIR

exceeds 30 %. In this paper a simple modification of the NDVI was proposed. The Wide Dynamic
Range Vegetation Index, WDRVI = (a * ρNIR–ρred)/(a * ρNIR +ρred), where the weighting coefficient a has
a value of 0.1–0.2, increases correlation with vegetation fraction by linearizing the relationship for typ-
ical wheat, soybean, and maize canopies. The sensitivity of the WDRVI to moderate-to-high LAI
(between 2 and 6) was at least three times greater than that of the NDVI. By enhancing the dynamic
range while using the same bands as the NDVI, the WDRVI enables a more robust characterization of
crop physiological and phenological characteristics. Although this index needs further evaluation,
the linear relationship with vegetation fraction and much higher sensitivity to change in LAI will be
especially valuable for precision agriculture and monitoring vegetation status under conditions of
moderate-to-high density. It is anticipated that the new index will complement the NDVI and other
vegetation indices that are based on the red and NIR spectral bands.

Key words: leaf area index – reflectance – remote estimation – vegetation fraction – vegetation index

Abbreviations: NDVI = Normalized Difference Vegetation Index. – NIR = near infrared. – WDRVI =
Wide Dynamic Range Vegetation Index. – LAI = Leaf Area Index. – VF = Vegetation Fraction. – ρred =
reflectance in the red spectral range. – ρNIR = reflectance in near infrared range
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Introduction

Observing the dynamics of the vegetated land surface syn-
optically from space plays a key role in understanding the
global water, carbon, and nitrogen cycles. Green vegetation
exhibits strong absorption in the red range of the spectrum
(around 670 nm); reflectance in this range, ρred, is below
3–5 %. In the near infrared (NIR) range, green vegetation
strongly reflects incident irradiation; reflectance in this region,
ρNIR, reaches 40–60 %. This distinctive contrast in spectral
behavior of vegetation has formed the background of terrest-
rial remote sensing for the past three decades. Spectral veg-
etation indices were devised and used as indicators of tem-
poral and spatial variations in vegetation structure and den-
sity (see, e.g., reviews by Verstrate et al. (1996) and Moran et
al. (1997) and references therein). The Normalized Difference
Vegetation Index (Rouse et al. 1974) combines information
contained in two spectral bands, the red and NIR: NDVI =
(ρNIR–ρred)/(ρNIR +ρred). It enables assessment and monitoring
of changes in canopy biophysical properties such as the veg-
etation fraction (VF), leaf area index (LAI), fraction of ab-
sorbed photosynthetically active radiation, and net primary
production (e.g., Asrar et al. 1984, Holben 1986, Sellers 1985,
Tucker et al. 1986).

Since 1979, the study of global vegetation phenology using
meteorological satellite data became possible with the avail-
ability of the Advanced Very High Resolution Radiometer
(AVHRR) onboard National Oceanic and Atmospheric Admin-
istration (NOAA) polar-orbiting weather satellites (e.g., Ei-
denshink 1992, Goward et al. 1985, Justice et al. 1985). These
sensors provide daily images of the earth at a nominal spatial
resolution of 1.1km. Land surface applications using AVHRR
data have traditionally been based on the NDVI.

Considerable effort has been expended in improving the
NDVI and in developing new indices, to compensate both for
the atmosphere (Atmospherically Resistant Vegetation Index
(ARVI): Kaufman and Tanre 1992) and canopy background
(Soil Adjusted Vegetation Indices (SAVI): e.g. Huete 1988,
Baret et al. 1989). The vegetation indices like the Modified
Simple Ratio (ρNIR/ρred–1)/(ρNIR/ρred +1)1/2 (Chen and Cihlar
1996) and the Renormalized Difference Vegetation Index
(ρNIR–ρred)/(ρNIR +ρred)1/2 (Roujean and Breon 1995) are con-
sidered more linearly related to various characteristics of
aboveground vegetation.

Despite its extensive use, the main disadvantage of NDVI-
like indices is the inherent nonlinear relationship with such
biophysical characteristics as VF, LAI and aboveground bio-
mass (e.g., Myneni et al. 1995, 2002, Huete et al. 2002). Gen-
erally, NDVI approaches saturation asymptotically under
moderate-to-high biomass conditions and for certain ranges
of the LAI and the VF (e.g., Sellers 1985, Baret and Guyot
1991, Buschmann and Nagel 1993, Gitelson et al. 2002 a, b,
2003). The nonlinear relationship between the NDVI and LAI
has a physical basis as described in Myneni et al. (1995). Sat-
uration effects have important consequences for detecting

change and monitoring the dynamics of vegetated land surfa-
ces. Therefore, the most relevant feature of improved vegeta-
tion indices should be «extended linearity to the biophysical
parameters over a wide range of vegetation conditions»
(Huete et al. 2002). Improved linearity and reduction of sat-
uration effects allow increasing accuracy in the estimation of
biophysical parameters.

This paper reports on the development and testing of a
significant enhancement to the NDVI that yields much greater
sensitivity in conditions of moderate-to-high vegetation den-
sity, which improves retrieval of crop phenology, the VF, and
the LAI.

Methods

Reflectance spectra of irrigated wheat were collected during two
growing seasons near the city of Beer-Sheva, Israel (31˚ 13′ N;
34˚ 48′ W). In the first year, experiments were conducted from middle
of December 1997 until the middle of May 1998, and used four wheat
varieties – «Ariel», «Ayalon», «Beit-Hashita», and «Yaniv». During the
1998–1999 growing season, only the «Ayalon» variety was used. The
data were collected over the course of the growing season, from sow-
ing until harvesting, at one- to two-week intervals. VF ranged from 0 to
100 %. Reflectance spectra were measured within each field at a few
randomly selected locations above the canopy using a Licor LI-1800
spectroradiometer in the range 400–1100nm with a spectral resolution
of 2nm. The methods were described in details elsewhere (Gitelson et
al. 2002a,b).

Reflectance spectra of maize were collected during 1998, 2001,
and 2002; reflectance spectra of soybean were collected during
2002. The study area was the University of Nebraska Agricultural Re-
search and Development Center, located near Mead, Nebraska, USA
(96˚ 28′ W; 41˚ 09′ N). In 1998, the specific study site was a one-acre
field of maize planted in a randomized design of 16 plots. The VF
ranged from 0 to 88 %. Hyperspectral data were collected using a
Spectron Engineering SE-590 portable spectroradiometer in the
range from 365 to 1126 nm, mounted on an all-terrain sensor platform
(Rundquist et al. 2001). A white Spectralon reflectance standard
(Labsphere, Inc., North Sutton, NH) was used to calibrate the spectro-
radiometer. Upwelling radiance of the reference panel was measured
twice in each plot before and after measurements of maize reflec-
tance. Spectral data were collected at regular intervals (every three
weeks) throughout the season at four stages of maize development
(cf. Gitelson et al. 2002a,b).

In 2001, one dryland and two irrigated maize production fields
(each 65 ha) were studied; in 2002, data were collected over one irri-
gated maize field and two soybean fields (one irrigated and one dry-
land). Six plots were established per field for spectral measurements,
each with six randomly selected sampling points. VF ranged from 0 to
94% and LAI from 0 to 6.2.

Spectral measurements were made using a dual-fiber system with
two inter-calibrated Ocean Optics USB2000 radiometers mounted on
an all-terrain sensor platform (Rundquist et al. 2001). The data were
collected in the range 400–900 nm with a spectral resolution of about
1.5 nm (cf. Gitelson et al. 2003). Eighteen campaigns were carried out
in 2001 and 31 in 2002 from the beginning of June through the begin-
ning of October.
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In all experiments, radiometric data were collected close to solar
noon (between 11:00 and 13:00); thus, changes in the solar zenith an-
gle were minimized. Each measurement campaign took about one
half-hour in each field. Over the course of the growing season, the so-
lar elevation for the study site varied significantly. The correction of
anisotropic reflectance from the calibration target was made in accord
with Jackson et al. (1992).

On each sampling date, plants from a 1m length from either of two
rows within each test site were collected and the total number of
plants was recorded. Collection rows were alternated on successive
dates to minimize edge effects on subsequent plant growth. In the
lab, plants were separated into green leaves, dead leaves, stems,
and reproductive organs. The green leaves were run through an area
meter (Model LI-3100, Li-Cor, Inc., Lincoln NE) and the green leaf area
per plant was determined (cf. Gitelson et al. 2003).

Green VF (the vertical projection of the green vegetation including
leaves, stems, and branches to the ground surface expressed as per-
cent of the reference area) was estimated using digital imagery from a
Kodak DC-40 camera. Digital images were acquired at each plot at
the same height as the radiometric scan. The area (size) and location
of the spectroradiometers field of view (FOV) in each image was de-
termined and a model was designed to exclude data outside the FOV.
To distinguish green plants from the natural background of soils and

plant residues and to estimate green vegetation fraction, the green
and red brightness values were used (Woebbecke et al. 1995).

The NDVI was calculated as (ρNIR–ρred)/(ρNIR +ρred) with ρNIR =
ρ725–1000 and ρred = ρ580–680 corresponding to the spectral channels of
the AVHRR (Ohring et al. 1989).

Results

In the crops studied, the NDVI was sensitive to changes in VF
and LAI only at the beginning of the growing season when VF
ranges from 0 to 40–50 % and LAI from 0 to 1.2 (Fig. 1 and
Gitelson et al. 2002 a, b, 2003). When the VF approached
60 %, the NDVI leveled off and was not sensitive to the VF
ranging between 60 and 100 %. In maize and soybean, the
NDVI reached maximal values around 0.8 and then remained
virtually invariant while the LAI changed between 2 and 6.

The reason for saturation of the NDVI in wheat, maize and
soybean was analyzed by establishing the relationships be-
tween the NDVI and its constituents, the red (ρred) and the
NIR (ρNIR) reflectance (Fig. 1). As canopy density increased,

Figure 1. The NDVI and the red reflectance plotted versus the NIR reflectance for (A) wheat (Israel 1998/99), (B) soybean (Nebraska 2002), (C)
maize (Nebraska 2002), and (D) maize (Nebraska 2001). The red reflectance saturated at moderate-to-high vegetation density, decreasing be-
low 3 %, while the NIR reflectance continued to increase with an increase in the canopy density. However, this high variability of the ρNIR had little
effect on NDVI values when the ρNIR exceeded 30 %. The NDVI approached a saturation level asymptotically for a NIR reflectance around 30 %
that corresponded to LAI around 2 and VF around 60%.
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Figure2. NIR reflectance plotted versus maize and soybean green leaf area index.

Figure 3. The NDVI plotted versus the NIR reflectance, ρNIR. The NDVI was calculated for the ρNIR from 2 to 60 % and a ρred ranging from 2 to
20%. A ρred between 10 and 20% corresponds to sparse vegetation, while a ρred between 2 to 7% is typical for moderate-to-high vegetation den-
sity. For a ρred between 10 and 20 %, the NDVI shows significant sensitivity to change in the ρNIR with a slightly decreasing slope at high ρNIR val-
ues. For ρred <7%, the NDVI fails to respond to changes in the ρNIR between 30 and 65%.
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the ρred decreased; the ρred of crops followed an inverse curvi-
linear relationship that reached an asymptote around 3 %
when the ρNIR exceeded 30 %. The NDVI approached a sat-
uration level asymptotically at a ρNIR around 30 % that corre-
sponded to the VF around 60% and LAI around 2. Thus, when
LAI >2 and VF >60 %, both the ρred and the NDVI approached
asymptotic values and exhibited virtually no additional
change. In contrast, the ρNIR continued to increase with an in-
crease in LAI (Fig. 2). However, an increase in the ρNIR from
30% to 55–65% produced virtually no change in the NDVI.

Figure 3 illustrates the relationship between the NDVI and
ρNIR as the ρred ranges from 2 to 20 %. A high ρred corre-
sponds to sparse vegetation, while a ρred between 2 to 5 % is
typical of moderate-to-high crop density. For a ρred between
10 and 20%, the NDVI changed significantly with the ρNIR; the
slope of the relationship decreased slightly at high ρNIR val-
ues. For a ρred smaller than 7 %, the NDVI was sensitive to
change in a ρNIR below 25–30 % but showed little sensitivity
to change in the ρNIR above 30 %. Sensitivity of the NDVI to
ρNIR was dependent upon the ρNIR/ρred ratio, decreasing with
an increase in the ratio. For a ρNIR exceeding 30 % and for a
ρred between 2 and 7, the sensitivity of the NDVI to increasing
ρNIR diminished drastically.

Thus, while the red reflectance response to LAI > 2 was
nearly flat (Fig. 1), significant NIR response from wheat, soy-

bean, and maize canopies was found (Fig. 2) to provide valu-
able information on the LAI and VF. Nevertheless, this sensi-
tivity of the ρNIR to crop biophysical characteristics did not
affect the NDVI when ρNIR exceeded 30 %. The reason for the
small sensitivity of the NDVI to a moderate-to-high vegetation
density results from the very mathematical formulation of the
index: the ratio of the difference to sum, (ρNIR – ρred)/(ρNIR +
ρred). The normalization procedure makes the NDVI insensi-
tive to variation in ρNIR when ρNIR � ρred (Fig.3). For ρNIR/ρred �

1, both the numerator and denominator approach equiva-
lence and the sensitivity of the index to the ρNIR becomes
negligible.

The only way to make the dynamic range of the NDVI wider
is to rely on the non-saturated NIR band under moderate-to-
high biomass conditions (Fig.2). The sensitivity of the NDVI to
ρNIR >30% can be enhanced by introducing a weighting coef-
ficient a <1 to decrease the disparity between the contribu-
tions of the ρNIR and the ρred to the NDVI. We call this index
the Wide Dynamic Range Vegetation Index (WDRVI) and sug-
gest the following form:

WDRVI = (a *ρNIR–ρred)/(a *ρNIR + ρred)

The performance of the NDVI and that of the WDRVI with a
ranging from 0.05 to 0.2 for an estimation of VF in wheat, soy-
bean, and maize is shown in Figure 4. The NDVI increased

Figure 4. The NDVI and the WDRVI plotted versus the vegetation fraction of (A) wheat (Israel 1998/99), (B) soybean (Nebraska 2002), (C) maize
(Nebraska 1998), and (D) maize (Nebraska 2002). For all crops studied, the NDVI leveled off and remained insensitive to a VF >60%. The WDRVI
with coefficient a between 0.05 and 0.2 maintained fairly linear relationships with the vegetation fraction.
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Figure 5. The vegetation indices plotted versus green LAI in maize (Nebraska 2001). The lines are best-fit functions. The NDVI increased with an
increase in the LAI until the LAI = 2, then it leveled off and remained insensitive to an increasing LAI between 2 and 6. With a decrease in coeffi-
cient a in the WDRVI, the relationship WDRVI versus LAI became more linear and sensitivity of the index to the LAI increased significantly.

with an increasing vegetation fraction up to 50–60 % and
then leveled off and remained insensitive to VF >60 %. In con-
trast, the WDRVI was sensitive to the VF across the entire
range of its variation. For all crops studied, linear relation-
ships between VF and the WDRVI (a between 0.05 and 0.2)
were obtained with coefficients of determination greater than
0.93.

The performance of the NDVI and the WDRVI to estimate
LAI is compared in Figure 5. With an increase in LAI, the
NDVI increased until LAI reached 2. Then it leveled off and
remained insensitive to LAI ranging between 2 and 6. In con-
trast, with a decrease in weighting coefficient a, the relation-
ship WDRVI vs. LAI became more linear and more sensitive to
an increasing LAI. This enhancement is especially pro-
nounced in the range of the LAI ranged from 2 to 6 with the
coefficient a in the WDRVI between 0.05 and 0.2; the sensitiv-
ity of the WDRVI to the LAI increased at least three-fold com-
pared to that of the NDVI. The weighting coefficient a, when in
the range of 0.05 and 0.2, made the magnitudes of a * ρNIR

and ρred comparable and thereby enabled each to affect the
index.

Comparison of the NDVI with the WDRVI demonstrates that
for a ranging between 0.05 and 0.2, the dynamic range of the
WDRVI was consistently greater than that of the NDVI
(Fig. 6 A). The WDRVI was especially sensitive to moderate-
to-high vegetation density when the NDVI exceeded 0.6.

Sensitivities of the WDRVI and the NDVI to LAI were com-
pared quantitatively using the following expression:

Sr = [d(WDRVI)/d(NDVI)] * [∆WDRVI/∆NDVI]–1

where d(WDRVI) and d(NDVI) are the first derivatives of the
indices with respect to LAI, and ∆WDRVI = WDRVImax –
WDRVImin and ∆NDVI = NDVImax – NDVImin are the ranges of
the WDVI and the NDVI, i.e., the difference between the max-
imal and minimal WDRVI and NDVI values observed during
growing season.

The function Sr tracks the relative sensitivity of WDRVI and
NDVI to changes in crop LAI. Values of Sr < 1 indicate that
NDVI is more sensitive than that of WDRVI. When Sr = 1, the
sensitivities of the indices are equal. Values of Sr > 1 indicate
that WDRVI is more sensitive than the NDVI. Figure 6 B shows
that for a = 0.05–0.3, when NDVI ranges between 0 and 0.63,
the Sr < 1. This range of the NDVI corresponds to LAI in soy-
bean and maize around one (cf. Fig. 5). Thus, when the LAI
ranges between 0 and 1, the NDVI is more sensitive than the
WDRVI. Once the NDVI > 0.63, Sr >1; it means that the WDRVI
is more sensitive to the LAI >1 than NDVI (cf. Fig.5).

It is important to emphasize that the threshold of equal sen-
sitivity for the NDVI and the WDRVI, viz. around 0.65, should
be understood as relevant to proximal sensing, when the top-
of-canopy (TOC) reflectance is involved in index calculations.
The threshold will likely be close to this value for close-range
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Figure 6. (A) Relationship between the WDRVI and the AVHRR NDVI for maize and soybean (Nebraska 2002). For a ranging between 0.05 and
0.3, the dynamic range of the WDRVI was consistently greater than that of the NDVI. Once NDVI >0.6 (it corresponds to LAI >1) the slope of the
relationship NDVI versus WDRVI dropped significantly, showing higher sensitivity of the WDRVI to LAI that that of the NDVI. (B) Relative sensitiv-
ity of the WDRVI to that of NDVI to change in maize LAI, expressed as the function Sr = [d(WDRVI)/d(NDVI)] * [∆WDRVI/∆NDVI]–1, plotted versus
NDVI in maize for various coefficient a. Values of Sr <1 indicate that NDVI is more sensitive than that of WDRVI. When Sr = 1, the sensitivities of the
indices are equal. Values of Sr >1 indicate that WDRVI is more sensitive than the NDVI. For a = 0.05–0.3, when NDVI ranges between 0 and 0.63,
the Sr < 1. This range of the NDVI corresponds to LAI in soybean and maize around one (cf. Fig. 5). Thus, for LAI ranging between 0 and 1, the
NDVI is more sensitive to LAI than the WDRVI. Once the NDVI > 0.63, Sr > 1; it means that once the LAI > 1, the WDRVI is more sensitive than
NDVI (cf. Fig.5).

sensing of other vegetation types. However, the threshold will
occur at significantly lower NDVI values when for top-of-
atmosphere (TOA) reflectances measured by spaceborne
sensors are used in index calculations. The differences
between TOC and TOA NDVI for vegetated surfaces have
been observed to range from 0.20 to 0.37 (Kaufman 1989,
p. 391 and 409); thus, the threshold value for TOA NDVI is
expected to range between 0.3 and 0.4.

Discussion and Conclusion

This study provided evidence that in crops studied the ρNIR

responds significantly to changes in moderate-to-high crop
density (Fig. 2). This ρNIR response was used to enhance
empirically the dynamic range of the NDVI, especially under
conditions of moderate-to-high vegetation density. Compara-
ble values of the ρred and a * ρNIR enable the improved per-
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formance of the WDRVI as compared to the NDVI. This mod-
ification of the NDVI has been shown to improve the correla-
tion between the WDRVI and VF, making the relationship
between them linear. It also increased – by at least 3-fold –
the sensitivity of the WDRVI to LAI ranging between 2 and 6.

The present analysis provides a methodological approach
to identifying specific values of the coefficient a in the WDRVI.
The next step is to apply the approach to a much larger data-
base of canopy spectra and eventually using data from
MODIS, AVHRR, Thematic Mapper, and other prominent spa-
ceborne sensors.

The differential sensitivity of the NDVI and the WDRVI to
vegetation density could be combined for improved vegeta-
tion dynamics. A smooth weighting function that selects the
NDVI for lower vegetation density and the WDRVI for higher
vegetation density could optimize monitoring of vegetation
cover and density using a single, blended index. This appli-
cation also requires a large representative data set of canopy
spectra to derive the right optimization.

The WDRVI, by increasing its dynamic range while using
the same bands as the NDVI, enables a better characteriza-
tion of vegetation biophysical properties and land surface
condition under high biomass situations. The promise of the
new index is to resolve vegetation structure in areas currently
subject to saturation of NDVI-like indices (ARVI and SAVI
among others) due to moderate-to-high biomass density. We
expect that WDRVI will be able to refine timing of phenologi-
cal stages and stress identification in crops. Although this
needs further evaluation, linear relationship with VF and much
higher sensitivity to change in LAI will be especially valuable
for monitoring of vegetation status with moderate-to-high veg-
etation density.

The WDRVI approach also can be used to enhance the
dynamic range of the Green Atmospherically Resistant Index
(Gitelson et al. 1996), which uses the green and NIR bands.
To make the WDRVI atmospherically resistant and soil-
adjusted, the concept of the Atmospherically Resistant Vege-
tation Index (Kaufman and Tanre 1992) and concept of soil-
adjusted indices (e.g., Huete et al. 1988, 1997, Baret et al.
1989) can be applied to the WDRVI in the same way as has
been applied to the NDVI.

To optimize the vegetation signal with improved sensitivity
to high biomass regions, many alternative vegetation indices
have been proposed over the past decade and they have
shown more linear relationships between remotely sensed
data and percent canopy cover, leaf area index, and green
leaf biomass (e.g., Kim et al. 1994, Huete et al. 1997, Daugh-
try et al. 2000, Gitelson et al. 2002 a, b, 2003). However, these
approaches use spectral channels that are not available in
the vast archive of AVHRR imagery, making them unsuitable
to correct the extensive and invaluable historical record as
well as data recorded by numerous proximal and aircraft
remote sensing studies.

The application of the WDRVI approach to AVHRR imagery
makes it possible to increase sensitivity to moderate-to-high

vegetation biomass, thus providing the opportunity for a fresh
look at archived image time series to enhance the under-
standing of global land surface dynamics.
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